APPLICATION LEVEL PERFORMANCE METRICS

SANOG 16 Paro, Bhutan

WHY IS MEASURING IMPORTANT?

"To measure is to know."

- Lord Kelvin

"If you can not measure it, you can not improve it." - *Lord Kelvin*

"If you try to measure something accurately you will change something related"

- Heisenberg's uncertainty principle

SANOG 16 Paro, Bhutan

HOW TO DEFINE A GOOD METRIC ?

- The metrics must be concrete and well-defined
- A methodology for a metric should have the property that it is repeatable: if the methodology is used multiple times under identical conditions, the same measurements should result in the same measurements.
- •The metrics must exhibit no bias for IP clouds implemented with identical technology

SANOG 16 Paro, Bhutan

HOW TO DEFINE A GOOD METRIC ?

• The metrics must exhibit understood and fair bias for IP clouds implemented with non-identical technology

• The metrics must be useful to users and providers in understanding the performance they experience or provide,

• The metrics must avoid inducing artificial performance goals.

SANOG 16 Paro, Bhutan

A GOOD MEASUREMENT SYSTEM ?

- Direct measurement of a performance metric using injected test traffic.
- Projection of a metric from lower-level measurements.
- Estimation of a constituent metric from a set of more aggregated measurements.
- Estimation of a given metric at one time from a set of related metrics at other times

SANOG 16 Paro, Bhutan

STATISTICS BACKGROUND

Distributions

- 1. Normal Distribution
- 2. Poisson Distribution

SANOG 16 Paro, Bhutan

NORMAL DISTRIBUTION

SANOG 16 Paro, Bhutan

BINOMIAL DISTRIBUTION

SANOG 16 Paro, Bhutan

STATISTICS BACKGROUND

- Population
- Mean
- Mode
- Median
- Outliers
- Percentile

SANOG 16 Paro, Bhutan

SAMPLING OF DATA

- Sample should be representative of data
- The sampling should be properly randomized
- Anomalies can be missed or can be a significant contributor

IMPORTANT TERMS

- Bandwidth
- Latency
- Throughput

TYPES OF MEASUREMENT

- Active Measurement
- Passive Measurement

ACTIVE MEASUREMENT

- Typically uses sampling
- Great for outside-in performance measurement
- Artificial measurement
- Measurement framework could add it's own biases
- Lower coverage of data
- Sometime only practical alternative

SANOG 16 Paro, Bhutan

PASSIVE MEASUREMENT

- Can take real life samples
- More real
- Have to deal with more data typically
- More Coverage
- Sampling can be used. Efficacy of sampling can be seen.
- Should remove outliers to sanitize data

SANOG 16 Paro, Bhutan

APPLICATION MEASUREMENT

Problems

- All packets are not created equal
- Depend upon lower layers
- QoS in the underlying network can treat different packets differently
- Software Behavior at end-points
- Codec-issues and sync problems
- Out of order packets
- Asymmetric routing

SANOG 16 Paro, Bhutan

GOTCHAS

- Nagle's algorithm
- AIMD algorithm
- Other algorithms
- Caching effects

SANOG 16 Paro, Bhutan

PING FOR LATENCY MEASUREMENT

Not a good idea Why?

PING FOR LATENCY MEASUREMENT Not a good idea Why ?

- Ping blocked at some end-points
- ICMP is heavily deprioritized in some networks
- Asymmetric routing can skew times

The case against traceroute and tcptraceroute

SANOG 16 Paro, Bhutan

HTTP LATENCY MEASUREMENT

- HEAD
- GET
- POST
- PUT

Effect of different Headers and tuning parameters on response times

SANOG 16 Paro, Bhutan

HTTP(S) LATENCY MEASUREMENT

- Breakup of different components
- DNS Resolution
- Connection Time
- SSL Handshake Time
- Request Time
- First Byte Time
- Base Page Download Time
- Embedded Content Download Time

SANOG 16 Paro, Bhutan

Webpagetest

SANOG 16 Paro, Bhutan

STREAMING LATENCY MEASUREMENT

Higher level metrics

- DNS Resolution time
- Initial Buffering time
- Rebuffer time
- Number of Rebuffers

SANOG 16 Paro, Bhutan

STREAMING LATENCY MEASUREMENT

Lower level metrics

- Loss of packets with Key frames
- Out of order packets
- Congestion delays

SANOG 16 Paro, Bhutan

NETWORK ARCHITECTURE

- Example of an Active measurement Network
- Example of a Passive measurement network

IETF WORKING GROUPS

- IPPM
- PMOL
- BMWG

REFERENCES

Conferences

- Passive and Active Measurement conference http://www.pamconf.net/
- Internet Measurement Conference http://conferences.sigcomm.org/imc/
- Velocity Conference
 - http://en.oreilly.com/velocity2010

SANOG 16 Paro, Bhutan

REFERENCES

Books

- High Performance Websites
- Even Faster Websites
- Web Operations: Keeping the Data On Time

RFCs

- IPPM Metrics for Measuring Connectivity RFC 2678
- Framework for IP Performance Metrics RFC 2330

SANOG 16 Paro, Bhutan

Email : vinayakh@gmail.com

