

Introduction to IPv6 and IPv6 Deployment

Colombo, Sri Lanka 16 January 2011

In conjunction with

🔌 APNIC

2

Presenter

Champika Wijayatunga
 Training Manager, APNIC <u>champika@apnic.net</u>

🔌 APNIC

3

Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

APNIC

What Is IPv6?

- IP stands for Internet Protocol which is one of the main pillars that supports the Internet today
- Current version of IP protocol is IPv4
- The new version of IP protocol is IPv6
- There is a version of IPv5 but it was assigned for excremental use [RFC1190]
- IPv6 was also called IPng in the early days of IPv6 protocol development stage

Background Of IPv6 Protocol

- During the late 1980s (88-89) Internet has started to grow exponentially
- The ability to scale Internet for future demands requires a limitless supply of IP addresses and improved mobility
- In 1991 IETF decided that the current version of IP (IPv4) had outlived its design and need to develop a new protocol for Internet
- In 1994 IETF gave a clear direction of IPng or IPv6 after a long process of discussion

APNIC

R

6

Background Of IPv6 Protocol

- August 1990
 - First wakeup call by Solensky in IETF on IPv4 address exhaustion
- December 1994
 - IPng area were formed within IETF to manage IPng effort [RFC1719]
- December 1994
 - List of technical criteria was defined to choose IPng [RFC1726]
- January 1995
 - IPng director recommendation to use 128 bit address [RFC1752]
- December 1995
 - First version of IPv6 address specification [RFC1883]
- December 1998
 - Updated version changing header format from 1st version [RFC2460]

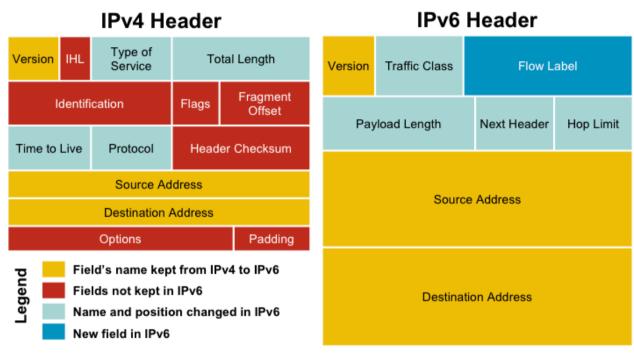
APNIC

R

Motivation Behind IPv6 Protocol

- New generation Internet need:
 - Plenty of address space (PDA, Mobile Phones, Tablet PC, Car, TV etc etc ⁽²⁾)
 - Solution of very complex hierarchical addressing need, which IPv4 is unable provide
 - End to end communication without the need of NAT for some real time application i.e online transaction
 - Ensure security, reliability of data and faster processing of protocol overhead
 - Stable service for mobile network i.e Internet in airline

APNIC


R

8

New Functional Improvement In IPv6

- Address Space
 - Increase from 32-bit to 128-bit address space
- Management
 - Stateless autoconfiguration means no more need to configure IP addresses for end systems, even via DHCP
- Performance
 - Fixed header sizes (40 byte) and 64-bit header alignment mean better performance from routers and bridges/switches

Protocol Header Comparison

- IPv4 contain 10 basic header field
- IPv6 contain 6 basic header field
- IPv6 header has 40 octets in contrast to the 20 octets in IPv4
- So a smaller number of header fields and the header is 64-bit aligned to enable fast processing by current processors

APNIC

R

10

APNIC

R

Agenda

IPv6 Overview

IPv6 Addressing

- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

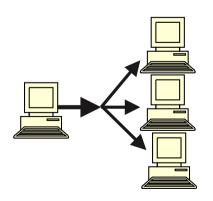
Size of the IPv6 address space

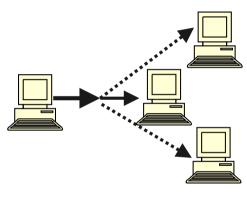
- An IPv6 address is 16 octets (128 bits)
- This would allow every person on the planet to have their own internet as large as the current Internet
- It is difficult to foresee running out of IPv6 addresses

🔌 APNIC

IPv6 addressing

- 128 bits of address space
- Hexadecimal values of eight 16 bit fields
 - X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE)
 - 16 bit number is converted to a 4 digit hexadecimal number
- Example:
 - FE38:DCE3:124C:C1A2:BA03:6735:EF1C:683D
 - Abbreviated form of address
 - 4EED:0023:0000:0000:0000:036E:1250:2B00
 - →4EED:23:0:0:0:36E:1250:2B00
 - →4EED:23::36E:1250:2B00
 - (Null value can be used only once)


IPv6 addressing model


- IPv6 Address type
 - Unicast

RFC 4291

- An identifier for a single interface
- Anycast
 - An identifier for a set of interfaces
- Multicast
 - An identifier for a group of nodes

IPv6 Address Range

- Unspecified Address
- Loopback
- Global Unicast 0010
- Link Local 1111 1110 10
- ::1/128 2000::/3 FE80::/10

::/128

Multicast Address 1111 1111 FF00::/8

Unicast address

- Address given to interface for communication between host and router
 - Global unicast address currently delegated by IANA

- [001			
	FP	Global routing prefix	Subnet ID	I nterface ID
	3bits	45 bits	16 bits	64 bits

- Local use unicast address
 - Link-local address (starting with FE80::)

1111111010	0000000	Interface ID
10 bits	54 bits	64 bits

🔌 APNIC

Special addresses

- The unspecified address
 - A value of 0:0:0:0:0:0:0:0 (::)
 - It is comparable to 0.0.0.0 in IPv4
- The loopback address
 - It is represented as 0:0:0:0:0:0:0:1 (::1)
 - Similar to 127.0.0.1 in IPv4

Agenda

- IPv6 Overview
- IPv6 Addressing

IPv6 Address Management

- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

R

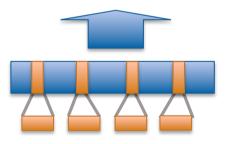
APNIC

Allocation And Assignment

- Allocation
 - "A block of address space held by an IR (or downstream ISP) for subsequent allocation or assignment"
 - Not yet used to address any networks
- Assignment
 - "A block of address space used to address an operational network"
 - May be provided to ISP customers, or used for an ISP's infrastructure ('self-assignment')

R

APNIC


Portable And Non-portable

Portable Assignments

- Customer addresses independent from ISP
 - Keeps addresses when changing ISP
- Bad for size of routing tables

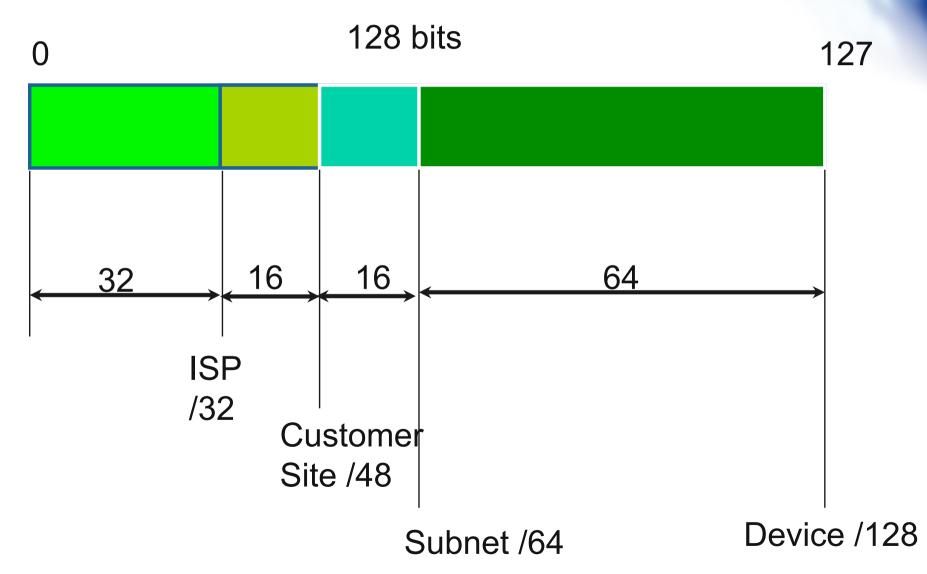
Non-portable Assignments

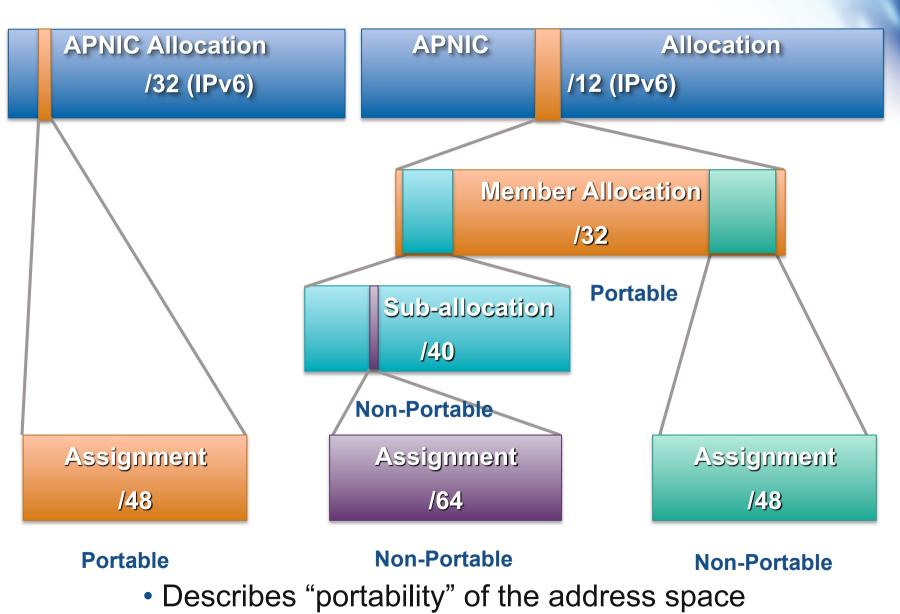
- Customer uses ISP's address space
 - Must renumber if changing ISP
- Only way to effectively scale the Internet

Initial IPv6 Allocation

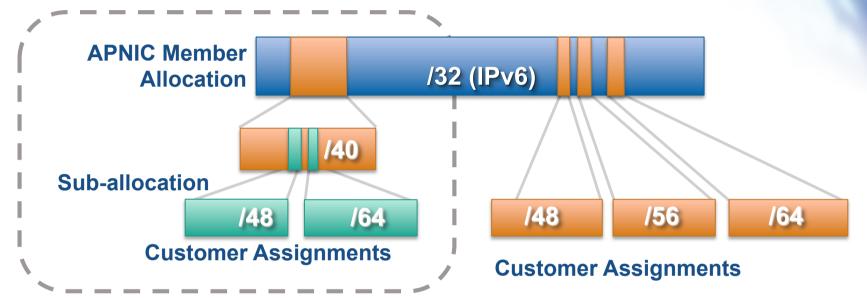
- To qualify for an initial allocation of IPv6 address space, an organization must:
 - Not be an end site (must provide downstream services)
 - Plan to provide IPv6 connectivity to organizations to which it will make assignments

IPv6 Initial Allocation (cont.)


- Meet one of the two following criteria:
 - Have a plan for making at least 200 assignments to other organizations within two years OR
 - Be an existing ISP with IPv4 allocations from an APNIC or an NIR, which will make IPv6 assignments or sub-allocations to other organizations and announce the allocation in the inter-domain routing system within two years


"One Click" IPv6 Policy

- Members with IPv4 holdings can click the button in MyAPNIC to instantly receive their IPv6 block
 - No forms to fill out!
- A Member that has an IPv4 allocation is eligible for a /32
- A Member that has an IPv4 assignment is eligible for a /48


IPv6 addressing structure

DINUR 25

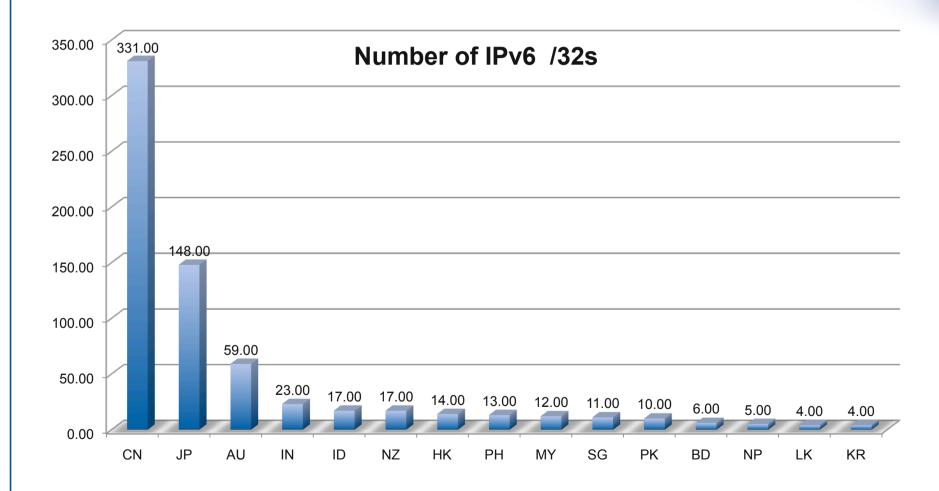
Sub-allocations

No max or min size

• Max 2 year requirement

• Assignment Window & 2nd Opinion applies

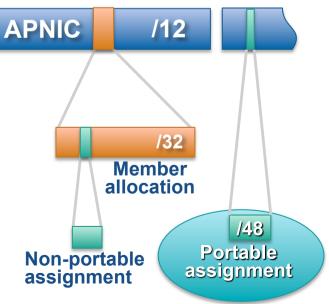
- to both sub-allocation & assignments
 - Sub-allocation holders don't need to send in 2nd opinions


DINUR 26

Sub-allocation Guidelines

- Sub-allocate cautiously
 - Only allocate or assign what the customer has demonstrated a need for
 - Seek APNIC advice if in doubt
- Efficient assignments
 - Member is responsible for overall utilisation
- Database registration (WHOIS Db)
 - Sub-allocations & assignments must be registered in the whois db

DING 27


APNIC IPv6 Allocations By Economy

DING 28

Portable Assignments for IPv6

- For (small) organisations who require a portable assignment for multi-homing purposes
 - The current policy allows for IPv6 portable assignment to end-sites
 - Size: /48, or a shorter prefix if the end site can justify it
 - To be multihomed within 3 months



R

APNIC

IXP IPv6 Assignment Policy

- Criteria
 - Demonstrate 'open peering policy'
 - 3 or more peers
- Portable assignment size: /48
 - All other needs should be met through normal processes
 - /64 holders can "upgrade" to /48
 - Through NIRs/ APNIC
 - Need to return /64

🔌 APNIC

Portable Critical Infrastructure Assignments

- What is Critical Internet Infrastructure?
 - Domain Registry Infrastructure
 - Operators of Root DNS, gTLD, and ccTLD
 - Address Registry Infrastructure
 - IANA, RIRs & NIRs
- Why a specific policy ?
 - Protect stability of core Internet function
- Assignment sizes:
 - IPv6: /32

APNIC

R

31

IPv6 utilisation

- Utilisation determined from end site assignments
 - ISP responsible for registration of all /48 assignments
 - Intermediate allocation hierarchy not considered
- Utilisation of IPv6 address space is measured differently from IPv4
 - Use HD ratio to measure
- Subsequent allocation may be requested when IPv6 utilisation requirement is met

DIND V 32

Subsequent allocation

- Must meet HD = 0.94 utilisation requirement of previous allocation (subject to change)
- Other criteria to be met
 - Correct registrations (all /48s registered)
 - Correct assignment practices etc
- Subsequent allocation results in a doubling of the address space allocated to it
 - Resulting in total IPv6 prefix is 1 bit shorter
 - Or sufficient for 2 years requirement

APNIC 33

HD Ratio

- The HD ratio threshold is
 - HD=log(/56 units assigned) / log (16,777,216)
 - 0.94 = 6,183,533 x /56 units
- Calculation of the HD ratio
 - Convert the assignment size into equivalent /56 units
 - Each /48 end site = 256 x /56 units
 - Each /52 end site = 16 x /56 units
 - Each /56 end site = $1 \times /56$ units
 - Each /60 end site = 1/16 x /56 units
 - Each /64 end site = 1/256 x /56 units

IPv6 utilisation (HD = 0.94)

• Percentage utilisation calculation

IPv6 Prefix	Site Address Bits	Total site address in /56s	Threshold (HD ratio 0.94)	Utilisation %
/42	14	16,384	9,153	55.9%
/36	20	1,048,576	456,419	43.5%
/35	21	2,097,152	875,653	41.8 %
/32	24	16,777,216	6,185,533	36.9%
/29	27	134,217,728	43,665,787	32.5 %
/24	32	4,294,967,296	1,134,964,479	26.4 %
/16	40	1,099,511,627,776	208,318,498,661	18.9 %

RFC 3194

"In a hierarchical address plan, as the size of the allocation increases, the density of assignments will decrease."

Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management

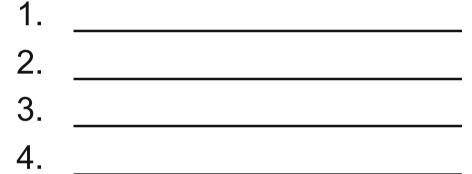
IPv6 Subnetting

- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

36

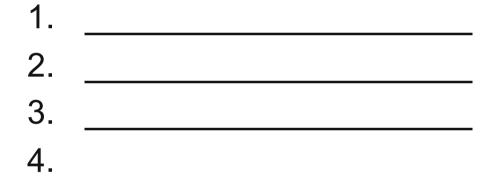
R

APNIC


Exercise

IPv6 Subnetting

Exercise 1.1: IPv6 subnetting


1. Identify the first four /64 address blocks out of 2001:AA:2000::/48

Exercise 1.2: IPv6 subnetting

Identify the fist four /36 address blocks out of 2001:ABC::/32

📎 APNIC

Exercise 1.3: IPv6 subnetting

3. Identify the first six /37 address blocks out of 2001:AA::/32

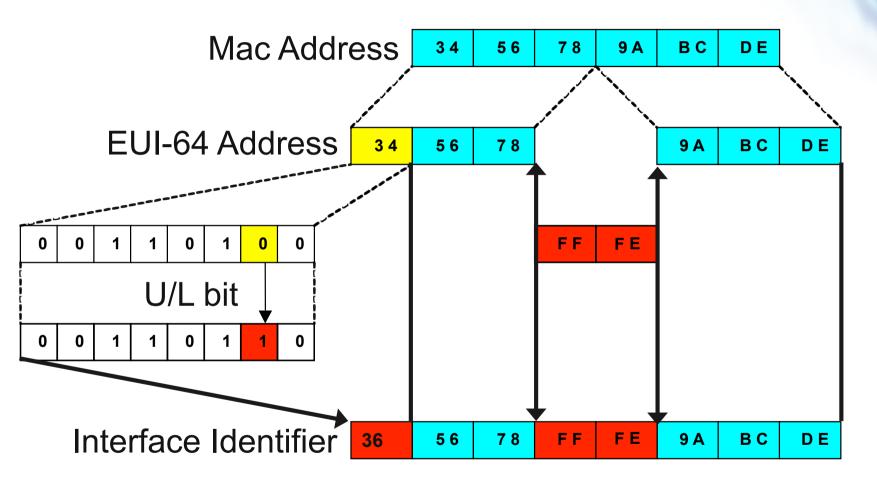
Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

Configuration of IPv6 Node Address

- There are 3 ways to configure IPv6 address on an IPv6 node:
 - Static address configuration
 - DHCPv6 assigned node address
 - Auto-configuration [New feature in IPv6]

Asia Pacific Network Information Centre

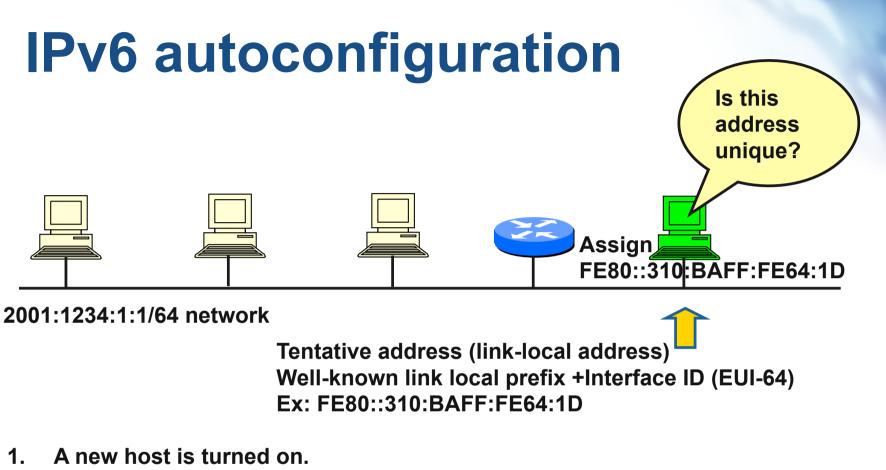

IPv6 Plug and Play

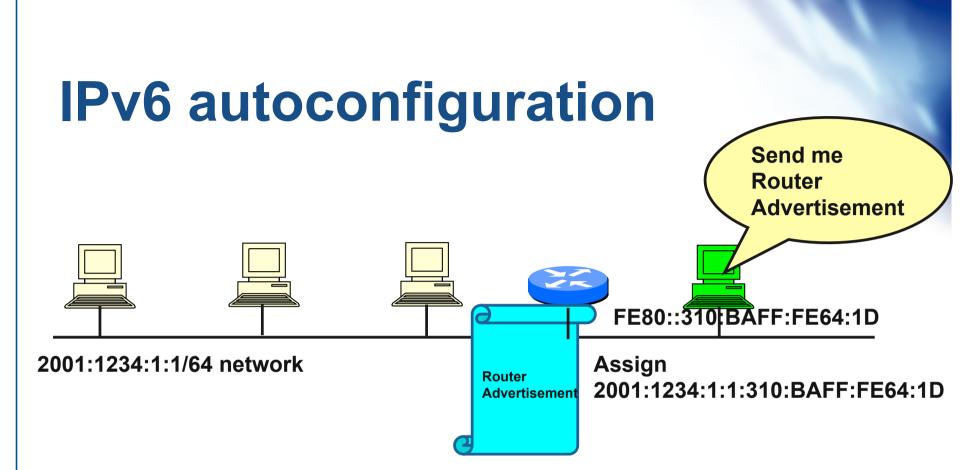
- IPv6 link local address
 - Even if no servers/routers exist to assign an IP address to a device, the device can still autogenerate an IP address
 - Allows interfaces on the same link to communicate with each other
- Stateless mechanism
 - For a site not concerned with the exact addresses
 - No manual configuration required
 - Minimal configuration of routers
 - No additional servers

Interface ID

- The lowest-order 64-bit field addresses may be assigned in several different ways:
 - auto-configured from a 48-bit MAC address expanded into a 64-bit EUI-64
 - assigned via DHCP
 - manually configured
 - auto-generated pseudo-random number
 - possibly other methods in the future

EUI-64


APNIC


1.

APNIC

R

- 2. Tentative address will be assigned to the new host.
- 3. **Duplicate Address Detection (DAD) is performed.** First the host transmit a Neighbor Solicitation (NS) message to all-nodes multicast address (FF02::1)
- If no Neighbor Advertisement (NA) message comes back then the address is 5. unique.
- FE80::310:BAFF:FE64:1D will be assigned to the new host. 6.

- 1. The new host will send Router Solicitation (RS) request to the all-routers multicast group (FF02::2).
- 2. The router will reply Routing Advertisement (RA).
- 3. The new host will learn the network prefix. E.g, 2001:1234:1:1/64
- 4. The new host will assigned a new address Network prefix+Interface ID E.g, 2001:1234:1:1:310:BAFF:FE64:1D

APNIC

R

Exercise 1: IPv6 Host Configuration

- Windows XP SP2
- netsh interface ipv6 install
- Windows XP
- ipv6 install

APNIC 📀

Exercise 1: IPv6 Host Configuration

- Configuring an interface
 - netsh interface ipv6 add address "Local Area Connection" 2406:6400::1
- Prefix length is not specified with address which will force a /64 on the interface

NIC APNIC

Exercise 1: IPv6 Host Configuration

- Verify your Configuration
- c:\>ipconfig

Exercise 1: IPv6 Host Configuration

Testing your configuration

• ping fe80::260:97ff:fe02:6ea5%4

Note: the Zone id is YOUR interface index

🔌 APNIC

Exercise 1: IPv6 Host Configuration

- Enabling IPv6 on Linux
 - Set the NETWORKING_IPV6 variable to yes in /etc/sysconfig/network

vi /etc/sysconfig/network

NETWORKING_IPV6=yes

service network restart

• Adding IPv6 address on an interface # ifconfig eth0 add inet6 2406:6400::1/64

Exercise 1: IPv6 Host Configuration • Configuring RA on Linux

- Set IPv6 address forwarding on
- # echo "1" /proc/sys/net/ipv6/conf/all/forward
- Need radvd-0.7.1-3.i386.rpm installed
- On the demon conf file /etc/radvd.conf

vi /etc/radvd.conf

Interface eth1 {

advSendAdvert on;

prefix 2406:6400::/64 {

AdvOnLink on;

};

};

Asia Pacific Network Information Centre

🔌 APNIC

Exercise 1: IPv6 Host Configuration

- Enabling IPv6 on FreeBSD
 - Set the ipv6_enable variable to yes in the / etc/rc.conf
 - # vi /etc/rc.conf
 - Ipv6_enable=yes
- Adding IPv6 address on an interface # ifconfig fxp0 inet6 2406:6400::1/64

🖉 APNIC

Zone IDs for local-use addresses

- In Windows XP for example:
- Host A:
 - fe80::2abc:d0ff:fee9:4121%4
- Host B:
 - fe80::3123:e0ff:fe12:3001%3
- Ping from Host A to Host B
 - ping fe80::3123:e0ff:fe12:3001%4 (not %3)
 - identifies the interface zone ID on the host which is connected to that segment.

APNIC

Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network Topology
 Overview

R

APNIC

🔌 APNIC

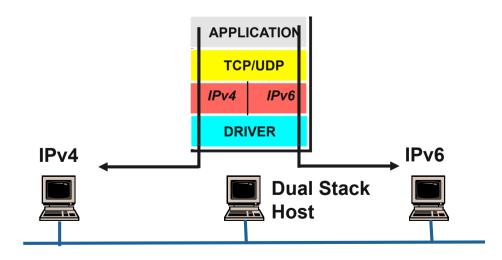
Transition overview

- How to get connectivity from an IPv6 host to the global IPv6 Internet?
 - Via an native connectivity
 - Via IPv6-in-IPv4 tunnelling techniques
- IPv6-only deployments are rare
- Practical reality
 - Sites deploying IPv6 will not transit to IPv6only, but transit to a state where they support both IPv4 and IPv6 (dual-stack)

APNIC

IPv4 to IPv6 transition

- Implementation rather than transition
 - No fixed day to convert
- The key to successful IPv6 transition
 - Maintaining compatibility with IPv4 hosts and routers while deploying IPv6
 - Millions of IPv4 nodes already exist
 - Upgrading every IPv4 nodes to IPv6 is not feasible
 - No need to convert all at once
 - Transition process will be gradual


Transition overview

- Three basic ways of transition
 - Dual stack
 - Deploying IPv6 and then implementing IPv6-in-IPv4 tunnelling
 - IPv6 only networking
- Different demands of hosts and networks to be connected to IPv6 networks will determine the best way of transition

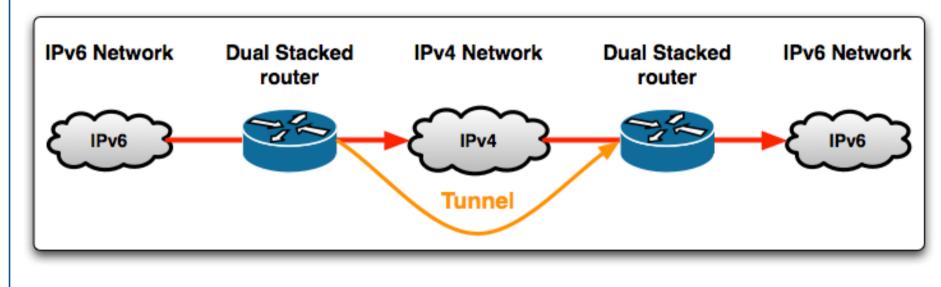
Dual stack transition

- Dual stack = TCP/IP protocol stack running both IPv4 and IPv6 protocol stacks simultaneously
 - Application can talk to both
- · Useful at the early phase of transition

Dual stack

- Challenges
 - Compatible software
 - Eg. If you use OSPFv2 for your IPv4 network you need to run OSPFv3 in addition to OPSFv2
 - Transparent availability of services
 - Deployment of servers and services
 - Content provision
 - Business processes
 - Traffic monitoring
 - End user deployment

Dual stack and DNS

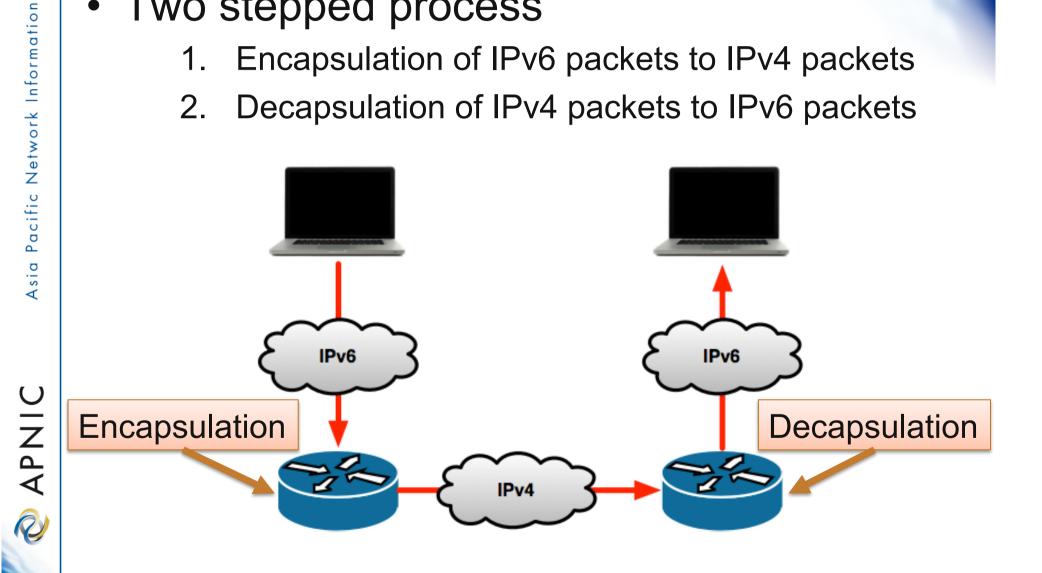

- DNS is used with both protocol versions to resolve names and IP addresses
 - An dual stack node needs a DNS resolver that is capable of resolving both types of DNS address records
 - DSN A record to resolve IPv4 addresses
 - DNS AAAA record to resolve IPv6 addresses
- Dual stack network
 - Is an infrastructure in which both IPv4 and Ipv6 forwarding is enabled on routers

Tunnels

- Part of a network is IPv6 enabled
 - Tunnelling techniques are used on top of an existing IPv4 infrastructure and uses IPv4 to route the IPv6 packets between IPv6 networks by transporting these encapsulated in IPv4
 - Tunnelling is used by networks not yet capable of offering native IPv6 functionality
 - It is the main mechanism currently being deployed to create global IPv6 connectivity
- Manual, automatic, semi-automatic configured tunnels are available

Tunneling – general concept Tunneling can be used by routers and

- hosts
 - Tunneling is a technique by which one transport protocol is encapsulated as the payload of another.

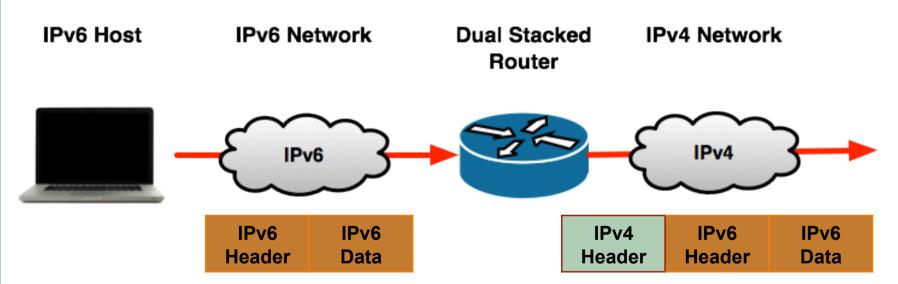


APNIC

Tunneling – general concept Two stepped process

ntre Φ C

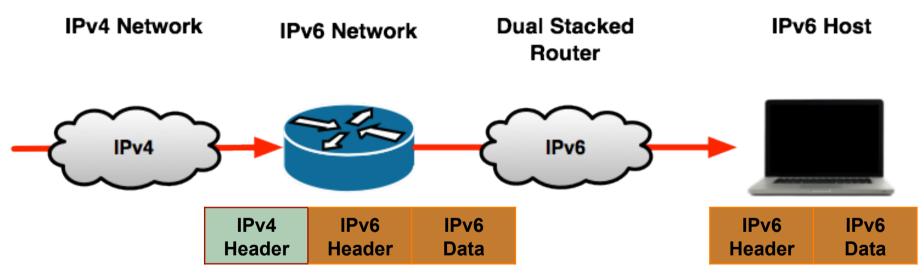
- Encapsulation of IPv6 packets to IPv4 packets 1.
- Decapsulation of IPv4 packets to IPv6 packets 2.

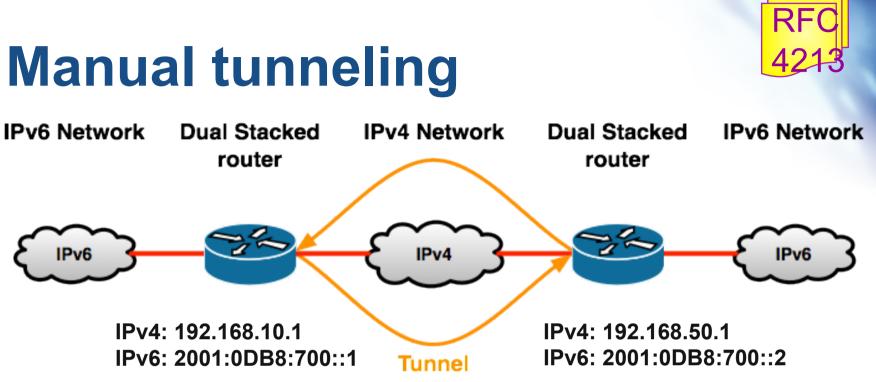

📎 APNIC

Tunnel encapsulation

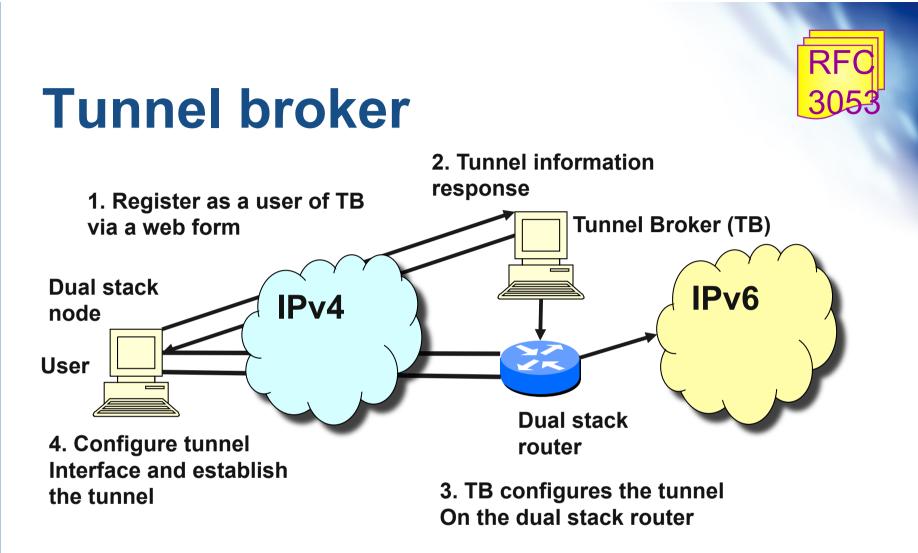
- The steps for the encapsulation of the IPv6 packet
 - The entry point of the tunnel decrements the IPv6 hop limit by one
 - Encapsulates the packet in an IPv4 header
 - Transmits the encapsulated packet through the tunnel

Tunnel encapsulation


Tunnel decapsulation

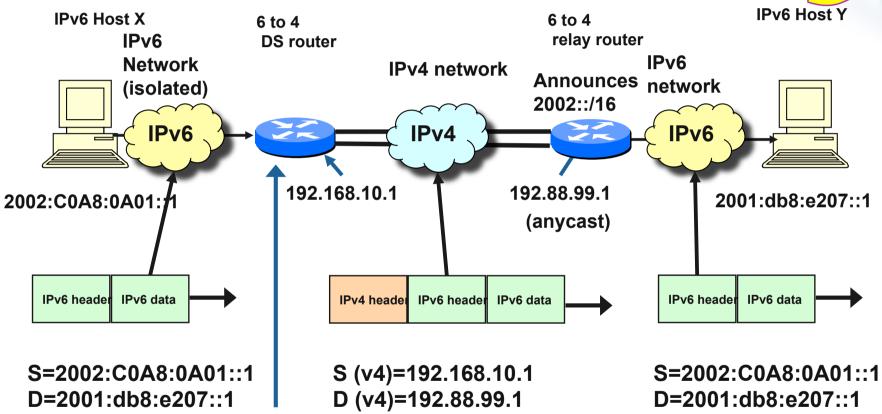

- The exit point of tunnel receives the encapsulated packet
 - If necessary, the IPv4 packet is fragmented
- It checks whether the source of the packet (tunnel entry point) is an acceptable source (according to its configuration)
 - If the packet is fragmented, the exit point reassembles it
- The exit point removes the IPv4 header
- Then it forwards the IPv6 packet to its original destination

IPv6 essentials by Silvia Hagen, p258


Tunnel decapsulation

Manually configured tunnels require:

- Dual stack end points
- Explicit configuration with both IPv4 and IPv6 addresses at each end



APNIC 📎

APNIC

R

Automatic tunneling – 6to4

D (v6)=2001:db8:e207::1

Default IPv6 route is 2002:co58:6301::

A destination route to a 2002::/ prefix is encapsulated in IPv4 and bits 17 - 48 used as the next hop. le 192.88.99.1 anycast

S (v6)=2002:C0A8:0A01::1

RFC

3068

RFC

3056

Agenda

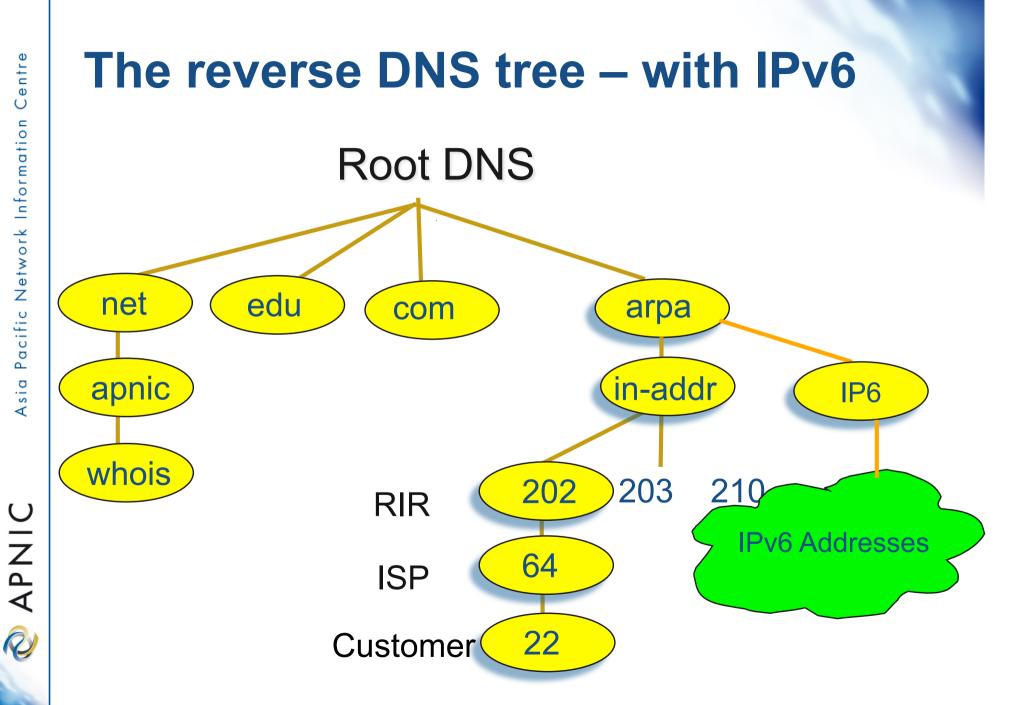
- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies

IPv6 DNS

APNIC Training ISP Network Topology
 Overview

APNIC

IPv6 representation in the DNS


- Forward lookup support: Multiple RR records for name to number
 - AAAA (Similar to A RR for IPv4)
- Reverse lookup support:
 - Reverse nibble format for zone ip6.arpa

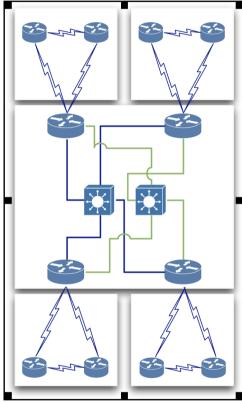
APNIC

IPv6 forward lookups

- Multiple addresses possible for any given name
 - Ex: in a multi-homed situation
- Can assign A records and AAAA records to a given name/domain
- Can also assign separate domains for IPv6 and IPv4

APNIC

R


Agenda

- IPv6 Overview
- IPv6 Addressing
- IPv6 Address Management
- IPv6 Subnetting
- IPv6 Host Configuration
- IPv4 to IPv6 Transition Technologies
- IPv6 DNS
- APNIC Training ISP Network
 Topology Overview

Scenario:

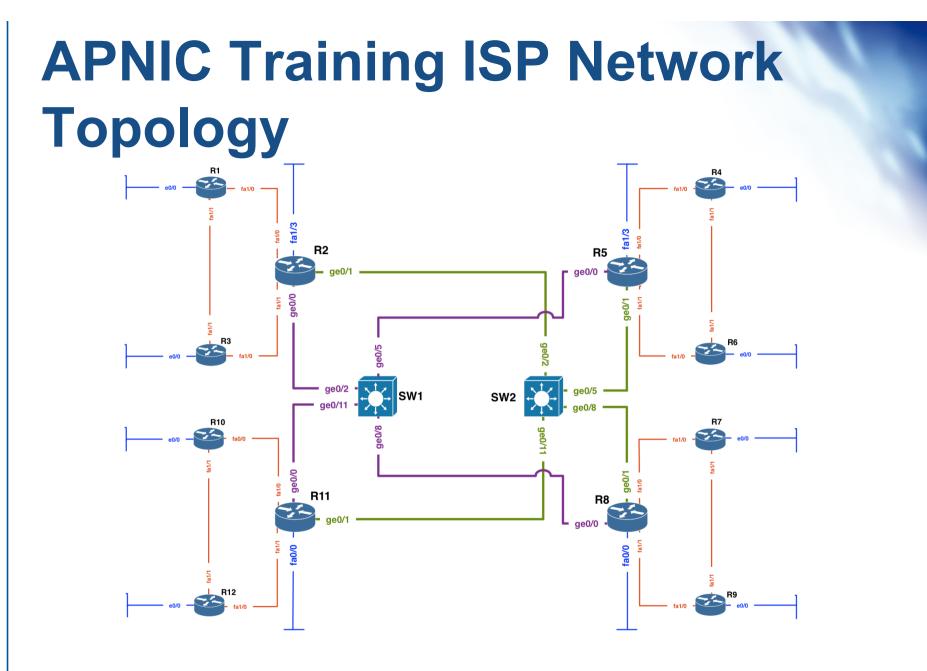
- Training ISP has 4 main operating area or region
- Each region has 2 small POP
- Each region will have one datacenter to host content
- Regional network are interconnected with multiple link

APNIC Training ISP Topology Diagram

APNIC Training ISP Network Topology Regional Network:

- Each regional network will have 3 routers
- 1 Core & 2 Edge Routers
- 2 Point of Presence (POP) for every region
- POP will use a router to terminate customer network i.e Edge Router
- Each POP is an aggregation point of ISP customer

Access Network:


- Connection between customer network & Edge router
- Usually 10 to 100 MBPS link
- Separate routing policy from most of ISP
- Training ISP will connect them on edge router with separate customer IP prefix

🔌 APNIC

APNIC Training ISP Network Topology Transport Link:

- Inter-connection between regional core router
- Higher data transmission capacity then access link
- Training ISP has 2 transport link for link redundancy
- 2 Transport link i.e Purple link & Green link are connected to two L3 switch

📎 APNIC

Training ISP Topology Diagram

APNIC Training ISP Network Topology Design Consideration:

- Each regional network should have address summarization capability for customer block.
- Prefix planning should have scalability option for next couple of years for both customer block and infrastructure
- No Summarization require for WAN and loopback address

Design Consideration:

 Conservation will get high preference for IPv4 address planning and aggregation will get high preference for IPv6 address planning.

📎 APNIC 85

Design Consideration:

- OSPF is running in ISP network to carry infrastructure IP prefix
- Each region is a separate OSPF area
- Transport core is in OSPF area 0
- Customer will connect on either static or eBGP (Not OSPF)
- iBGP will carry external prefix within ISP network

🔌 APNIC

Design Consideration:

- Training ISP is already in production with IPv4 protocol
- Need to implement IPv6 within the same infrastructure
- Down time need to minimize as less as possible
- There has to be a smooth migration plan from IPv4 to IPv6

🔌 APNIC

Summary parent block IPV4

Block#	Prefix	Size	Description
1	172.16.0.0	/19	Parent block
2	172.16.0.0	/20	Infrastructure
3	172.16.16.0	/20	Customer network

Detail DC infrastructure block IPV4

Block#	Prefix	Size	Description	SOR	Register
2	172.16.0.0	/20	Infrastructure		
4	172.16.0.0	/23	Router2 DC summary net		
5	172.16.0.0	/24	Router2 DC	No	Recommended
6	172.16.2.0	/23	Router5 DC summary net		
7	172.16.2.0	/24	Router5 DC	No	Recommended
8	172.16.4.0	/23	Router8 DC summary net		
9	172.16.4.0	/24	Router8 DC	No	Recommended
10	172.16.6.0	/23	Router11 DC summary net		
11	172.16.6.0	/24	Router11 DC	No	Recommended

NIC APNIC 89

Detail infrastructure WAN block IPV4

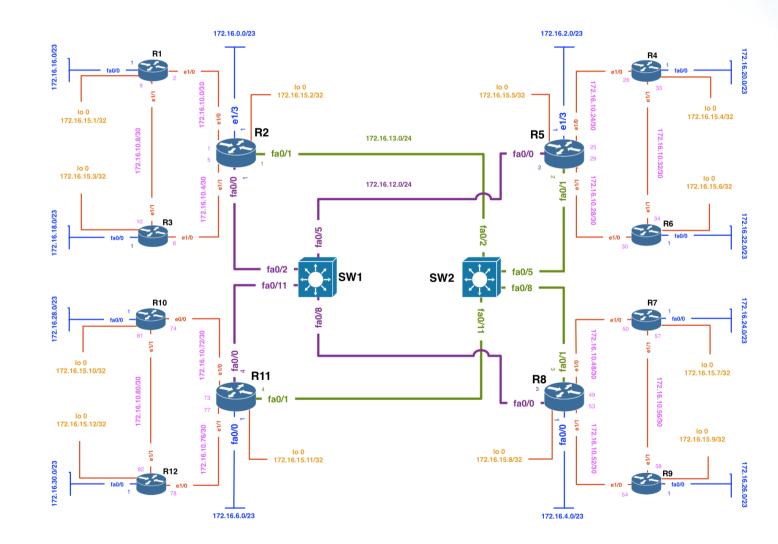
12	172.16.10.0	/24	WAN prefix		Optional
13	172.16.10.0	/30	Router2-1 WAN	No	
14	172.16.10.4	/30	Router2-3 WAN	No	
15	172.16.10.8	/30	Router1-3 WAN	No	
16	172.16.10.24	/30	Router5-4 WAN	No	
17	172.16.10.28	/30	Router5-6 WAN	No	
18	172.16.10.32	/30	Router4-6 WAN	No	
19	172.16.10.48	/30	Router8-7 WAN	No	
20	172.16.10.52	/30	Router8-9 WAN	No	
21	172.16.10.56	/30	Router7-9 WAN	No	
22	172.16.10.72	/30	Router11-10 WAN	No	
23	172.16.10.76	/30	Router11-12 WAN	No	
24	172.16.10.80	/30	Router10-12 WAN	No	

Asia Pacific Network Information Centre

🔌 APNIC 90

Detail infrastructure block Transport & Loopback IPV4

25	172.16.12.0	/24	Transit link BLUE	No	
26	172.16.13.0	/24	Transit link GREEN	No	
27	172.16.15.0	/24	Loopback	No	



Detail customer block IPV4

Block#	Prefix	Size	Description	SOR	Register
28	172.16.6.0	/20	Customer network		
29	172.16.16.0	/22	Router2 summary net		
30	172.16.16.0	/23	Router1 CS network	Yes	Must
31	172.16.18.0	/23	Router3 CS network	Yes	Must
32	172.16.20.0	/22	Router5 summary net	+ $+$	
33	172.16.20.0	/23	Router4 CS network	Yes	Must
34	172.16.22.0	/23	Router6 CS network	Yes	Must
35	172.16.24.0	/22	Router8 summary net		
36	172.16.24.0	/23	Router7 CS network	Yes	Must
37	172.16.26.0	/23	Router9 CS network	Yes	Must
38	172.16.28.0	/22	Router11 summary net		
39	172.16.28.0	/23	Router10 CS network	Yes	Must
40	172.16.30.0	/23	Router12 CS network	Yes	Must

Asia Pacific Network Information Centre

NIC APNIC 92

APNIC Training ISP IPv4 Address Plan

93

📎 APNIC

IPv6 address plan consideration:

- Big IPv6 address space can cause very very large routing table size
- Most transit service provider apply IPv6 prefix filter on anything other then /32 & /48 prefix size
- Prefix announcement need to send to Internet should be either / 32 or /48 bit boundary

IPv6 address plan consideration (RFC3177):

- WAN link can be used on /64 bit boundary
- End site/Customer sub allocation can be made on /56 bit boundary
- Utilization/HD ratio will be calculated based on /56 end site assignment/sub-allocation

Summary Parent Block & Regional Network (256x/40)

Block#	Prefix	Description
	2406:6400::/32	Parent Block
	2406:6400:0000:0000::/40	Infrastructure
	2406:6400:0100:0000::/40	Customer network Region 1
	2406:6400:0200:0000::/40	Customer network Region 2
	2406:6400:0300:0000::/40	Customer network Region 3
	2406:6400:0400:0000::/40	Customer network Region 4
	2406:6400:0500:0000::/40	
	2406:6400:0600:0000::/40	
	2406:6400:0700:0000::/40	
	2406:6400:0800:0000::/40	
	2406:6400:0900:0000::/40	
	2406:6400:0A00:0000::/40	
	2406:6400:0B00:0000::/40	
	2406:6400:0C00:0000::/40	
	2406:6400:0D00:0000::/40	
	2406:6400:0E00:0000::/40	
	2406:6400:0F00:0000::/40	

NIC APNIC

Summary Infrastructure Prefix (256x/48)

Block#	Prefix	Description
	2406:6400:0000:0000::/40	Infrastructure
	2406:6400:0000:0000::/48	Loopback
	2406:6400:0001:0000::/48	R2 DC Summary
	2406:6400:0002:0000::/48	R5 DC Summary
	2406:6400:0003:0000::/48	R8 DC Summary
	2406:6400:0004:0000::/48	R11 DC Summary
	2406:6400:0005:0000::/48	
	2406:6400:0006:0000::/48	
	2406:6400:0007:0000::/48	
	2406:6400:0008:0000::/48	
	2406:6400:0009:0000::/48	
	2406:6400:000A:0000::/48	
	2406:6400:000B:0000::/48	
	2406:6400:000C:0000::/48	
	2406:6400:000D:0000::/48	Purple Transport
	2406:6400:000E:0000::/48	Green Transport
	2406:6400:000F:0000::/48	WAN Prefix

🔌 APNIC

APNIC Training ISP IPV6 Addressing Plan IPv6 Address Plan WAN Prefix:

2406:6400:000F:0000::/48

WAN Prefix (65535x/64)

Centre	
Information	
Network	
Pacific	
Asia	

2406:6400:000F:0000::/64	R2-R1
2406:6400:000F:0001::/64	R2-R3
2406:6400:000F:0002::/64	R1-R3
2406:6400:000F:0003::/64	
2406:6400:000F:0004::/64	
2406:6400:000F:0005::/64	
2406:6400:000F:0006::/64	
2406:6400:000F:0007::/64	
2406:6400:000F:0008::/64	
2406:6400:000F:0009::/64	
2406:6400:000F:000A::/64	
2406:6400:000F:000B::/64	
2406:6400:000F:000C::/64	
2406:6400:000F:000D::/64	
2406:6400:000F:000E::/64	
2406:6400:000F:000F::/64	

2406:6400:000F:0010::/64	R5-R4
2406:6400:000F:0011::/64	R5-R6
2406:6400:000F:0012::/64	R4-R6
2406:6400:000F:0013::/64	
2406:6400:000F:0014::/64	
2406:6400:000F:0015::/64	
2406:6400:000F:0016::/64	
2406:6400:000F:0017::/64	
2406:6400:000F:0018::/64	
2406:6400:000F:0019::/64	
2406:6400:000F:001A::/64	
2406:6400:000F:001B::/64	
2406:6400:000F:001C::/64	
2406:6400:000F:001D::/64	
2406:6400:000F:001E::/64	
2406:6400:000F:001F::/64	

2406:6400:000F:0000::/48

WAN Prefix (65535x/64)

Centr	
Information	
Network	
Pacific	
Asia	

Φ

2406:	:6400:000F:0030::/64	R11-R10
2406:	:6400:000F:0031::/64	R11-R12
2406:	:6400:000F:0032::/64	R10-R12
2406:	:6400:000F:0033::/64	
2406:	:6400:000F:0034::/64	
2406:	:6400:000F:0035::/64	
2406:	:6400:000F:0036::/64	
2406:	:6400:000F:0037::/64	
2406:	:6400:000F:0038::/64	
2406:	:6400:000F:0039::/64	
2406:	:6400:000F:003A::/64	
2406:	:6400:000F:003B::/64	
2406:	:6400:000F:003C::/64	
2406	:6400:000F:003D::/64	
2406:	:6400:000F:003E::/64	
2406:	:6400:000F:003F::/64	
2406 2406 2406 2406 2406	:6400:000F:003A::/64 :6400:000F:003B::/64 :6400:000F:003C::/64 :6400:000F:003D::/64 :6400:000F:003E::/64	

2406:6400:000F:0020::/64	R8-R7
2406:6400:000F:0021::/64	R8-R9
2406:6400:000F:0022::/64	R7-R9
2406:6400:000F:0023::/64	
2406:6400:000F:0024::/64	
2406:6400:000F:0025::/64	
2406:6400:000F:0026::/64	
2406:6400:000F:0027::/64	
2406:6400:000F:0028::/64	
2406:6400:000F:0029::/64	
2406:6400:000F:002A::/64	
2406:6400:000F:002B::/64	
2406:6400:000F:002C::/64	
2406:6400:000F:002D::/64	
2406:6400:000F:002E::/64	
2406:6400:000F:002F::/64	

Summary Customer net Region 1 (256x/48)

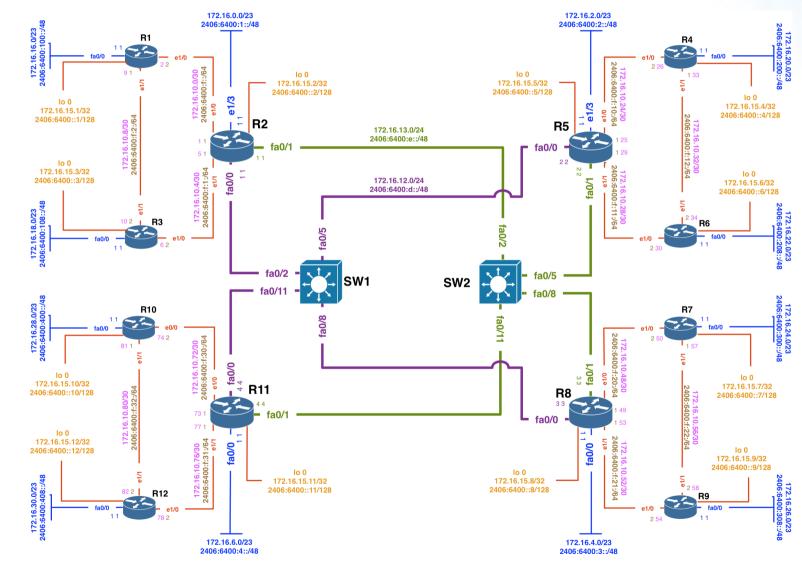
Block#	Prefix	Description
	2406:6400:0100:0000::/40	Customer network Region 1
	2406:6400:0100:0000::/48	R1 Cust Net
	2406:6400:0101:0000::/48	
	2406:6400:0102:0000::/48	
	2406:6400:0103:0000::/48	
	2406:6400:0104:0000::/48	
	2406:6400:0105:0000::/48	
	2406:6400:0106:0000::/48	
	2406:6400:0107:0000::/48	
	2406:6400:0108:0000::/48	R3 Cust Net
	2406:6400:0109:0000::/48	
	2406:6400:010A:0000::/48	
	2406:6400:010B:0000::/48	
	2406:6400:010C:0000::/48	
	2406:6400:010D:0000::/48	
	2406:6400:010E:0000::/48	
	2406:6400:010F:0000::/48	

Summary Customer net Region 2 (256x/48)

Block#	Prefix	Description
	2406:6400:0200:0000::/40	Customer network Region 2
	2406:6400:0200:0000::/48	R4 Cust Net
	2406:6400:0201:0000::/48	
	2406:6400:0202:0000::/48	
	2406:6400:0203:0000::/48	
	2406:6400:0204:0000::/48	
	2406:6400:0205:0000::/48	
	2406:6400:0206:0000::/48	
	2406:6400:0207:0000::/48	
	2406:6400:0208:0000::/48	R6 Cust Net
	2406:6400:0209:0000::/48	
	2406:6400:020A:0000::/48	
	2406:6400:020B:0000::/48	
	2406:6400:020C:0000::/48	
	2406:6400:020D:0000::/48	
	2406:6400:020E:0000::/48	
	2406:6400:020F:0000::/48	

Summary Customer net Region 3 (256x/48)

Block#	Prefix	Description
	2406:6400:0300:0000::/40	Customer network Region 3
	2406:6400:0300:0000::/48	R7 Cust Net
	2406:6400:0301:0000::/48	
	2406:6400:0302:0000::/48	
	2406:6400:0303:0000::/48	
	2406:6400:0304:0000::/48	
	2406:6400:0305:0000::/48	
	2406:6400:0306:0000::/48	
	2406:6400:0307:0000::/48	
	2406:6400:0308:0000::/48	R9 Cust Net
	2406:6400:0309:0000::/48	
	2406:6400:030A:0000::/48	
	2406:6400:030B:0000::/48	
	2406:6400:030C:0000::/48	
	2406:6400:030D:0000::/48	
	2406:6400:030E:0000::/48	
	2406:6400:030F:0000::/48	



Summary Customer net Region 4 (256x/48)

Block#	Prefix	Description
	2406:6400:0400:0000::/40	Customer network Region 4
	2406:6400:0400:0000::/48	R10 Cust Net
	2406:6400:0401:0000::/48	
	2406:6400:0402:0000::/48	
	2406:6400:0403:0000::/48	
	2406:6400:0404:0000::/48	
	2406:6400:0405:0000::/48	
	2406:6400:0406:0000::/48	
	2406:6400:0407:0000::/48	
	2406:6400:0408:0000::/48	R12 Cust Net
	2406:6400:0409:0000::/48	
	2406:6400:040A:0000::/48	
	2406:6400:040B:0000::/48	
	2406:6400:040C:0000::/48	
	2406:6400:040D:0000::/48	
	2406:6400:040E:0000::/48	
	2406:6400:040F:0000::/48	

🔌 APNIC

103

Asia Pacific Network Information Centre

R

APNIC

Configuration of OSPF as IGP

Scenario:

- Training ISP need to configure OSPF as IGP for both IPv4 and IPv6
- Dual stack mechanism will be used to ensure both IPv4 and IPv6 operation
- OSPFv3 supports IPv6 routed protocol
- IGP is used to carry next hop only for BGP

Configuration of OSPF as IGP

Minimum Router OS require for OSPF3:

Cisco IOS

- 12.2(15)T or later (For OSPFv3)
- 12.2(2)T or later (For IPv6 support)

Jun OS

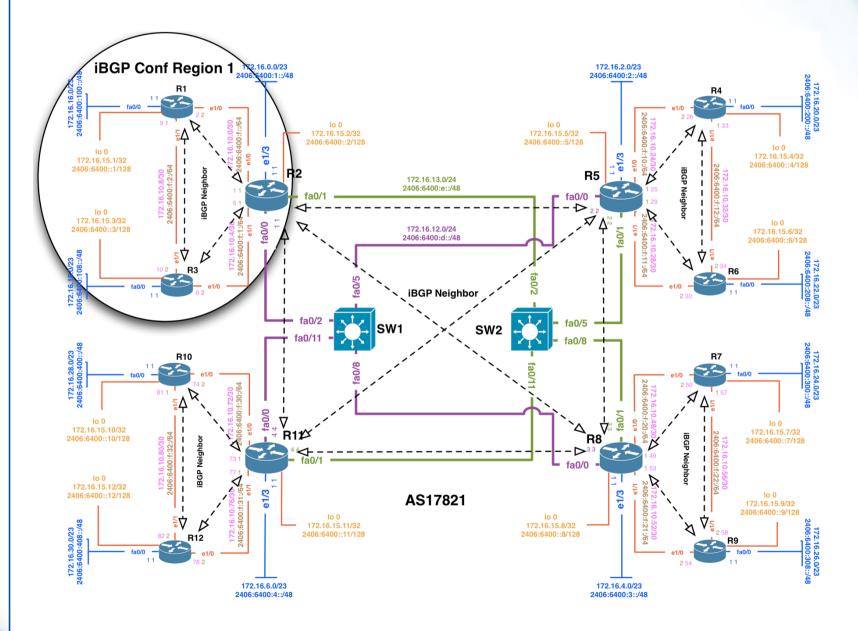
• JUNOS 8.4 or later

🔌 APNIC

APNIC Training ISP - Deployment IPv6 in EGP

Scenario:

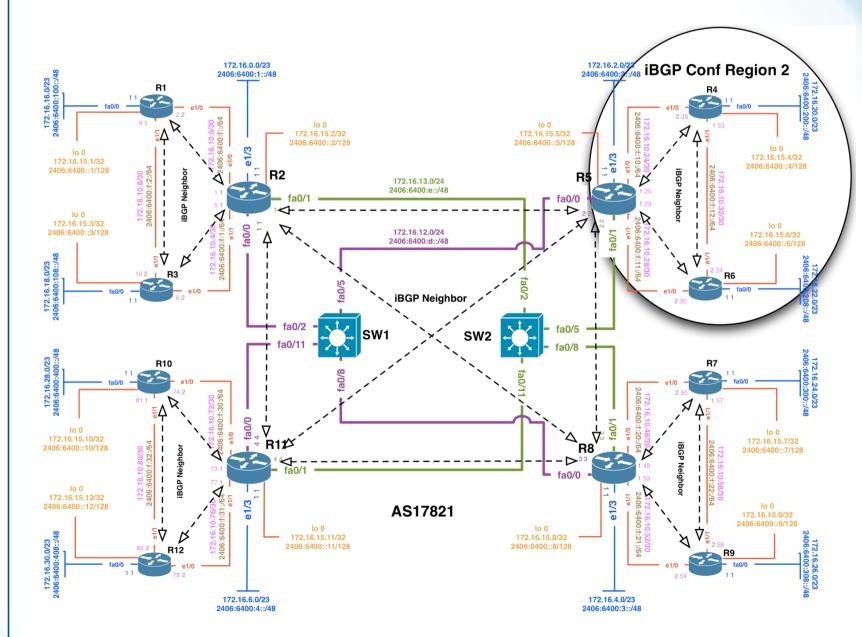
- BGP4 is used in Training ISP network
- iBGP is used between internal routers in Training ISP to carry external prefixes (i.e Customer & Global Internet Prefixes)
- Route Reflector is used to resolve iBGP full mesh scalability issue.



APNIC Training ISP - Deployment IPv6 in EGP

Scenario:

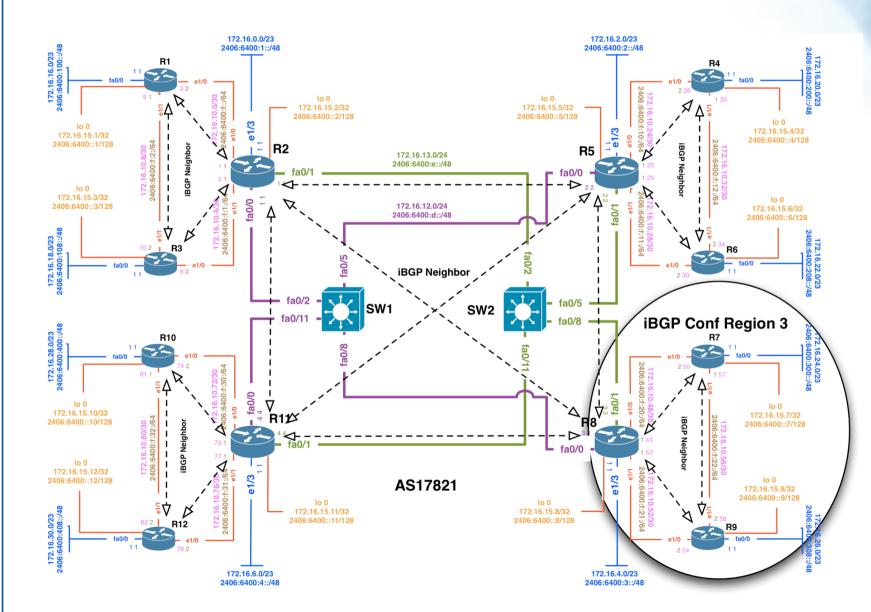
- Transit service with upstream ASes is configured with eBGP
- Customer network from
 downstream can also be
 configured with eBGP/Static
- Training ISP is having one native IPv6 transit and one tunnel IPv6 transit with AS45192 & AS131107 (2.35 as dot)

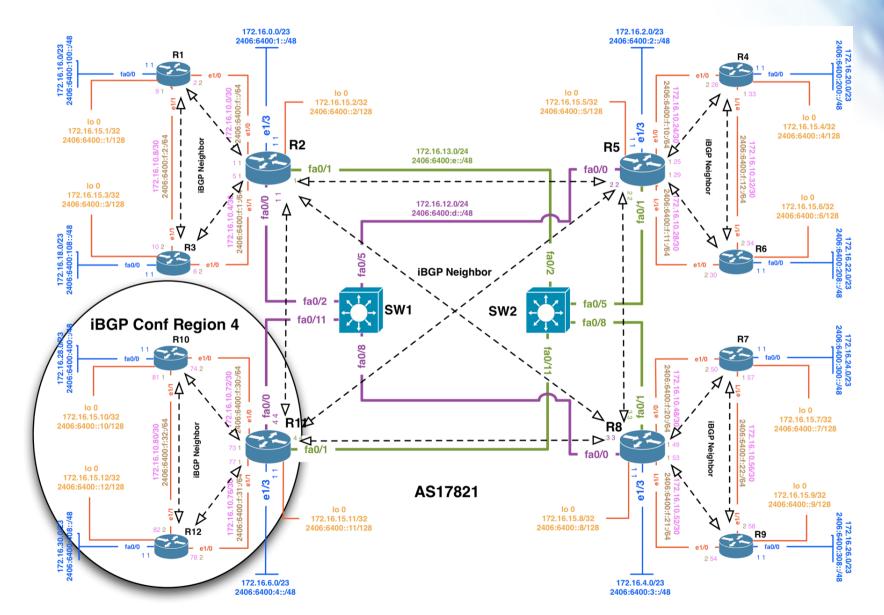


Asia Pacific Network Information Centr

Φ

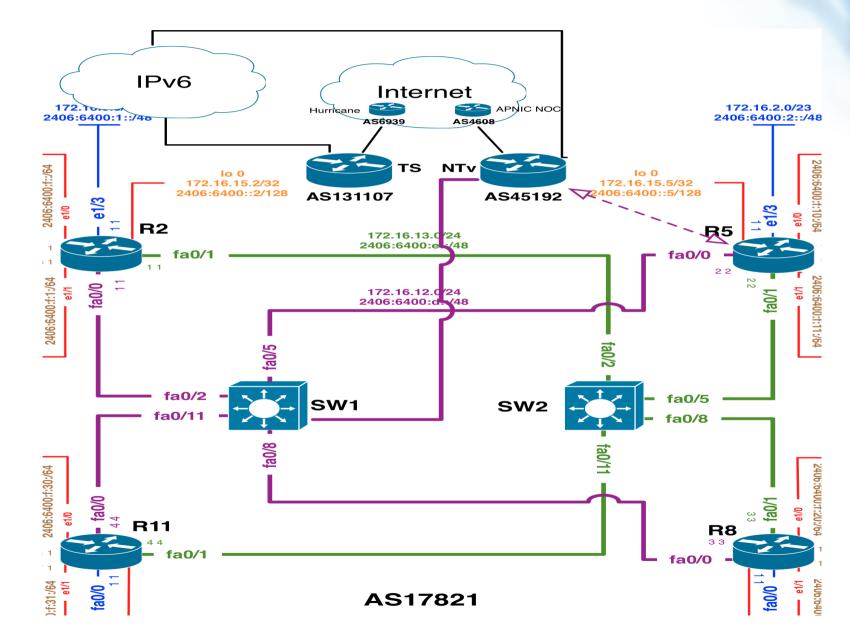
R


APNIC


Asia Pacific Network Information Centre

N 110

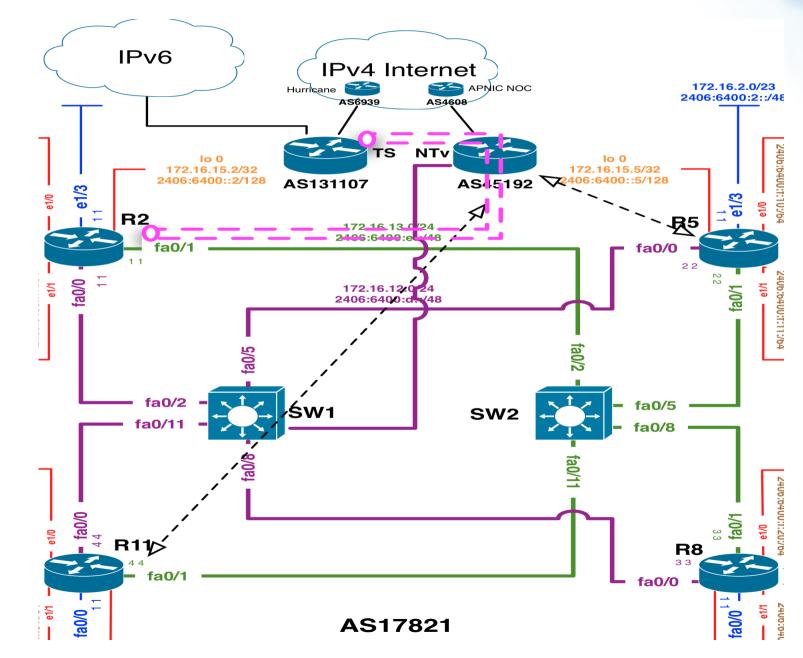
APNIC


Asia Pacific Network Information Centre

Φ

DINUR 2

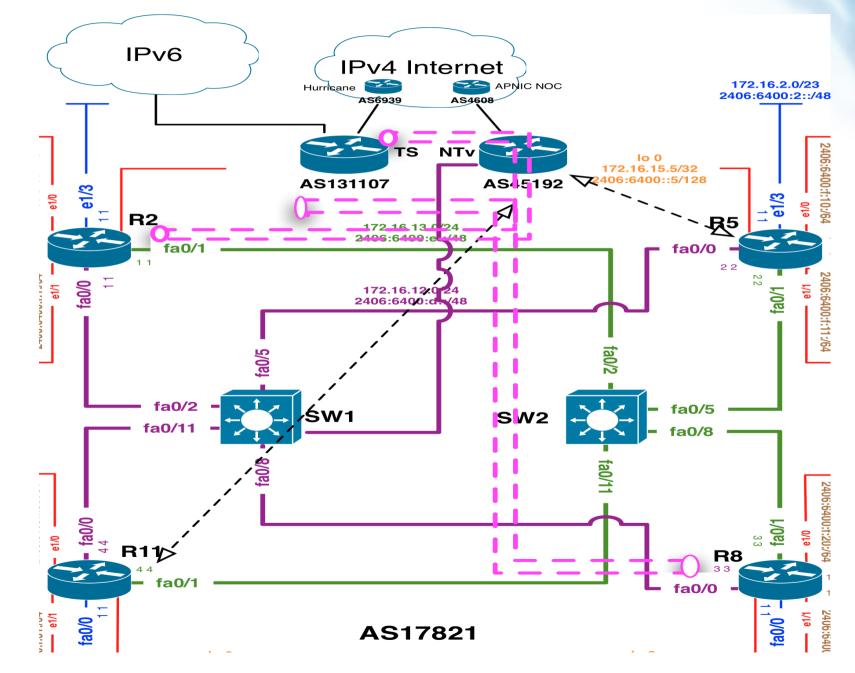
IPv6 Native Transit Conf Plan



113

R

APNIC


IPv6 Tunnel Transit Conf Plan

Asia Pacific Network Information Centre

DINGR 2114

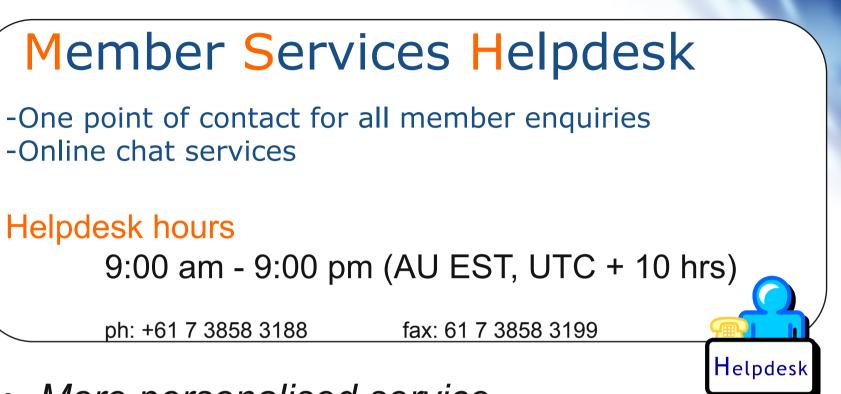

IPv6 Tunnel Transit Configuration

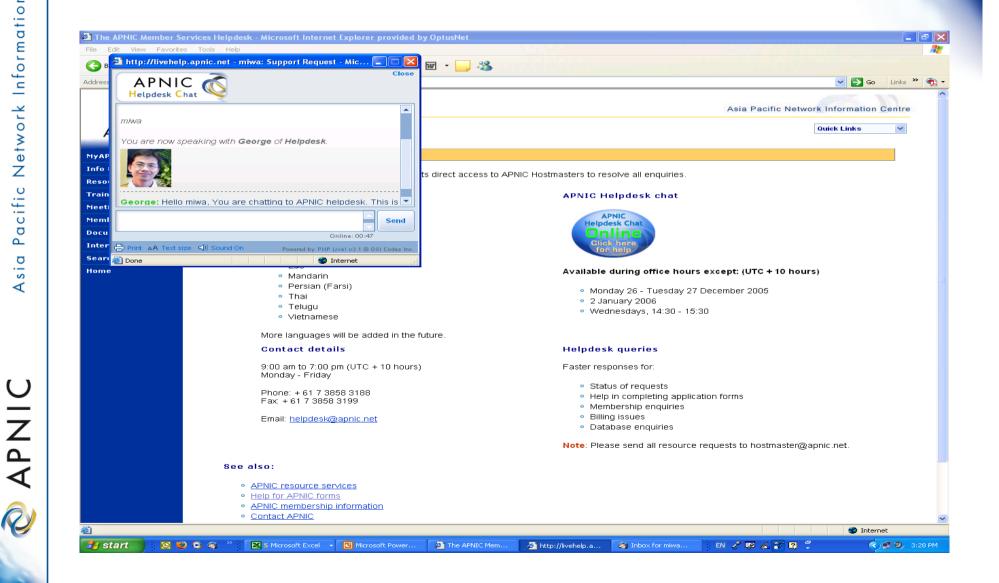
Asia Pacific Network Information Centre

DINUR 2

IPv6 Tunnel Transit Configuration

DINUR VIII


Finishing Up


Need any help?

- More personalised service
 - Range of languages: Bahasa Indonesia, Bengali, Cantonese, English, Hindi, Mandarin, Thai, etc.
- Faster response and resolution of queries
 - IP resource applications, status of requests, obtaining help in completing application forms, membership enquiries, billing issues & database enquiries

🔌 APNIC

APNIC Helpdesk chat

APNIC

R

121

APNIC Website

© 1999 - 2010 APNIC Pty. Ltd. | ABN 42 081 528 010 | Provide us with feedback

Privacy | RSS | A-Z Glossary

Meeting Reminder

- The next meeting is being held in Hong Kong from
 - 21 25 February 2011 in conjunction with APRICOT 2011.
- You can participate in person or remotely
- See the website for more details: http://meetings.apnic.net/31/home
- We look forward to seeing you there!

Questions?

Thank You! ③ </br><champika@apnic.net>