

South Asian Network Operators Group

Know Your Backbone : **DWDM**

Simon Sohel Baroi

Sr. Manager, ITC-IIG simon.baroi@fiberathome.net SANOG 23, Bhutan 2013

Submarine Cable Connectivity at Bangladesh :

Cable Name : Sea-Me-We 4

Operator : Bangladesh Submarine Cable Company Limited (BSCCL)

SONDG

Connectivity with TASHI BHUTAN via Terrestrial Cable:

8

SQNDG

AS Wise Traffic Engineering :

- Singapore Route become congested.
- Traffic Engineering is not working.
- Need bigger port of STM-16 or GE.
- POS STM-16 is too much Expensive.

- Singapore Route got expanded.
- Level3 Route became small
- Traffic Engineering is now working evenly.
- Opex same or reduced as Singapore is near.
- Capex reduced, as POS cards are really expensive.
- Router is routing and Transmission Equipment is Transmitting.

Need a Future-prof Transmission Backbone

SECTION

Introduction to WDM Network

TDM

• STM-16 \rightarrow STM-64

Cost & Complication

Solution of capacity expansion

WDM

 Economical & Mature & Quick

Different signals with specific wavelength are multiplexed into a fiber for transmission.

WDM System Structure :

WDM System Structure :

The overall structure of the WDM system of N-path wavelength:

- Optical Transponder Unit (OTU)
- Optical Multiplexer Unit / Optical De-multiplexer Unit (OMU/ODU)
- Optical Amplifier (OA)
- Supervisory Channel (OSC/ESC)

- Ultra high capacity
- Data transparency transmission
- Long haul transmission
- Compatible with existing optical fibers
- High performance-to-cost ratio
- High networking flexibility, economy and reliability
- Smooth expansion

CWDM Vs. DWDM:

CWDM: Coarse Wavelength Division Multiplex

DWDM: Dense Wavelength Division Multiplex

CWDM	DWDM
 Defined by wavelengths 	Defined by frequencies
Short-range communications	 Long-haul transmissions
Uses wide-range frequencies	Narrow frequencies
Wavelengths spread far apart	 Tightly packed wavelengths
 Wavelength drift is possible 	 Precision lasers required to keep channels on target
Breaks the spectrum into big chunks	Dices the spectrum into small pieces
 Light signal isn't amplified 	Signal amplification maybe used

SECTION

Some Theory of Fiber and Light for WDM Network

Consists of a cylindrical glass core, a glass cladding and a plastic wear-resisting coating.

Band for Light:

Dispersion :

Dispersion Compensation :

- The pulse will be broadened because of
 - Positive dispersion coefficient at 1550nm window
- DCF has negative dispersion coefficient and can counteract positive dispersion in transmission.

WDM Optical Layer Grooming

39

SONDG

SITE B : With OPS Card

Optical Layer Protection : ROADM

ROADM : DeMUX Board of HUAWEI

- WSS (Taking WSD9 as example):
 - Chromatic optical signal is de-multiplexed to monochromatic optical signals.
 - VOAs adjust the power of each monochromatic optical signal.
 - Then guide each of the monochromatic signals to different optical multiplexer by controlling the 1 x N (that is N=9 in the figure) optical switch array.
 - Finally transmit any monochromatic optical signal to any output port.

ROADM : WSMD4

- WSMD4: 4-port wavelength selective switching multiplexer and demultiplexer board.
- RDU is 1 x 4 coupler to separate the optical signal into four parts.

ROADM : WSMD4

SQNDG

ROADM:

- ROADM is really Expensive
- Per Degree we need one ROADM Card
- ROADM is not good for
 - Heavy Fiber CUT in the network
 - Overhead Cable Where fiber change the characters
- Optical Protection Switching is available and getting very smart everyday.
- 40G/100G Technology is available and getting cheaper
- Electrical Grooming via OTN

SECTION

WDM Electrical Layer Grooming

An Optical Transport Network (OTN) is composed of a set of Optical Network Elements connected by optical fiber links, able to provide functionality of transport, multiplexing, routing, management, supervision and survivability of client signals.

OTN (Optical Transport Network) :

- Compared with SDH and SONET :
 - Ultra capacity with high accuracy, Terabit/second per fiber via DWDM lines
 - Service transparency for client signals
 - Asynchronous mapping, powerful FEC function, predigest network design and reduce the cost
- Compared with traditional WDM
 - Enhanced OAM & networking functionality for all services
 - Dynamically electrical/optical layer grooming

—Centralized crossconnect bus (active)

Centralized crossconnect bus (standby)

ODUk Protection :

ODUk Protection

Block Diagram for Site B :

SECTION

Case Study : Dhaka to Cox's Bazar DWDM Link to Connect Sea-Me-We-4 Submarine Cable

- Area
 - Hilly-Rough Terrain
 - Flat
- Fiber Characteristics
 - Underground
 - Over Head
 - Power Grid Cable
- Need Backup or Not
- Future Forecasting
- Technology Trend 10G/40G/100G

Think Today – Not Tomorrow !!!

Making a DWDM Network - Case Study :

- Area : Flat
- Fiber Characteristics
 - Underground : Yellow Line
 - Power Grid Cable : Blue Line
- Protection : Ring Network

Required Traffic Matrix :

	NMC	Comilla	Feni (P)	Chittagong	Hathazari	Cox's Bazar	
NMC	0	4xSTM-16 2xGE	4xSTM-16 2xGE	4xSTM-16 1x10GE	4xSTM-16 2xGE	4 x STM-64 4xSTM-16 2xGE	
Comilla	4xSTM-16 2xGE	0					
Feni (P)	4xSTM-16 2xGE		0				
Chittagong	4xSTM-16 1x10GE			0		4 x STM-16	
Hathazari	4xSTM-16 2xGE				0		
Covia Rozan	4 x STM-64 4xSTM-16			4 × 5TNA 16		0	
Cox s Bazar	ZXGE			4 X STIVI-16			
Chandina	OLA Site	Fiber Loss 0.25 per km					
Feni (C)	OLA Site						

Proposed Traffic Matrix by Ciena :

	NMC	Comilla	Feni (P)	Chittagong	Hathazari	Cox's Bazar
NMC	0	3xSTM-16 2xGE	3xSTM-16 2xGE	4xSTM-16 1x10GE	3xSTM-16 2xGE	4 x STM-64 3xSTM-16 2xGE
Comilla	3xSTM-16 2xGE	0				
Feni (P)	3xSTM-16 2xGE		0			
Chittagong	4xSTM-16 1x10GE			0		4 x STM-16
Hathazari	3xSTM-16 2xGE				0	
Cov's Pazar	4 x STM-64 3xSTM-16			4 v STNA 16		0
COX S Dazar	ZXGE			4 X STIVI-10		
Chandina	OLA Site	Fiber Loss 0.25 per km				
Feni (C)	OLA Site					

P 2 P Traffic Distribution :

Network Proposed by CIENA :

Design Properties :

- Traffic Matrix
 - CIENA dropped one 10G channel to every point
 - One STM-16 is reduced to make the use for one 10G.
 - 3 x 2.5 (STM-16) + 2 GE = 10 G
- To Reduce the cost Hathazari to Chittagong link was dropped.
- OTN Services were used in single card
- No Centralized cross connect board were used here

Network Proposed by HUAWEI :

Traffic Matrix Supported by HUAWEI :

	NMC	Comilla	Feni (P)	Chittagong	Hathazari	Cox's Bazar
NMC	0	4xSTM-16 2xGE	4xSTM-16 2xGE	4xSTM-16 1x10GE	4xSTM-16 2xGE	4 x STM-64 4xSTM-16 2xGE
Comilla	4xSTM-16 2xGE	0				
Feni (P)	4xSTM-16 2xGE		0			
Chittagong	4xSTM-16 1x10GE			0		4 x STM-16
Hathazari	4xSTM-16 2xGE				0	
Cox's Bazar	4 x STM-64 4xSTM-16 2xGE			4 x STM-16		0

Network Proposed by HUAWEI :

Design Properties :

- Traffic Matrix
 - Full traffic was dropped according to requirement
- A big bypass link was crated between Hathazari and Chittagong.
- OTN Services were used in Centralized cross connect borad with 360 gbps license.
- HUAWEI used RAMAN Amplifier, which is expensive and crucial to handle the power of that card.

Network Proposed by CISCO :

Design Properties :

- Traffic Matrix
 - Full traffic was dropped according to requirement
 - 2x10G channel dropped every site
- Under-utilized Lambda
- A big bypass link was crated between Hathazari and Chittagong.
- ROADM Card is used everywhere and 3 are directionless site.
- As, this road faces to much fiber cut, ROADM and Fixed DCM is not suitable.

SON

- Length more than 120 km.
- Convergence : LFA/FRR/TE/RSVP
- Legacy Router Doesn't Support Above Protocols
- Service Independent Convergence
- LFA/FRR/TE is a CPU hungry Process, so quality degrades
- Fiber Characteristics Through NMS without further investment

POS: MIC-3D-40C30C12-10C48 (By Juniper)

Description : Low density multirate MIC, 4 port non-channelized OC3-OC12 / 1 port non-channelized OC48 MIC, (Requires a pluggable SFP optics module)

Ports at the Base : 2 x STM-64 4 x STM-16 4 x GE

- Plan your network according to your & Future need, not by limitation.
- Effective use of expensive IP Transit Bandwidth.
- Traffic Engineering at Layer-1.
- DWDM Backbone is Service Independent So Future Prof.
- Reduce Capex
- Simple Configuration Reduce Opex

Thank You.

South Asian Network Operators Group

SIMON SOHEL BAROI

Fiber@Home Limited House-7/B, Road-13, Gulshan-1, Dhaka-1212 Phone- 880 2 8814817, 8812507, Fax- 880 2 8812010 E-Mail : simon.baroi@fiberathome.net www.fiberathome.net

