

Graphite
Modern timeseries graphs

Graphite basics

● Graphite is a web based graphing program for
time series data.
– http://www.graphite.wikidot.com

● Written in Python
● Simple input format

– some.metric.name value unix_timestamp\n

● Consists of multiple separate daemons
● Has it's own storage backend

– Like RRD, but with more features

The church of graphs

● Pattern recognition
● Correlation

● Custom retention periods
● Out of order data insertion

● Time travel
● Image and title from Etsy

Moving parts

● Whisper/Ceres
– The storage backend

● Webapp
– Web frontend, and API provider

● Relaying daemons
– Event based daemons

– Matches input based on name

– Relays to one or more destinations based on rules or
hashing

Original production setup

● A small cluster
– We were planning to grow slowly

● RAID 1+0 spinning disk setup
– It works for our databases

● Ran into the IO wall
– Spinning rust sucks at IO

– Whisper updates force crazy seek patterns

Scaling problems

● We started with hosts in a /24 feeding one
box.

● We ran into IO issues when we added the
second /24.
– On the second day

Sharding

● Added more backends
● Manual rules to split traffic coming to the

Graphite setup to storage nodes
● This becomes hard to maintain and balance

Speeding up IO

● Move to 400 GB SSDs from HP in RAID 1.
● We got performance

– Not as much as we needed

● Losing a SSD meant the host crashed
– Negating the whole RAID 1 setup

● SSDs aren't as reliable as spinning rust in high
update scenarios

Naming conventions

● None in the beginning
● We adopted

– sys.* for system metrics

– user.* for user testing metrics

– Anything else that made sense

Metrics collectors

● Collectd ran into memory problems
– Used too much RAM

● Switch to Diamond
– Python application

– Base framework + metric collection scripts

– Added custom patches for internal metrics

Relaying

● We started with relays only on the cluster
– Relaying was done based on regex matching

● Ran into CPU bottlenecks as we added nodes
– Spun up relay nodes in each datacenter

● Did not account for organisational growth
– CPU was still a bottleneck

● Ran multiple relays on each host
– Haproxy used as a load balancer
– Pacemaker used for cluster failover

● Rewrite in C
– http://github.com/grobian/carbon-c-relay

statsd

● We added statsd early on
● We didn't use it for quite some time

– Found that our PCI vulnerability scanner reliably
crashed it

– Patched it to handle errors, log and throw away bad
input

● The first major use was for throttling external
provider input

● We use this only for metrics from a couple of
applications.

Business metrics

● Turns out, our developers like Graphite
● They didn't understand RRD/Whisper

semantics though
– Treat graphite queries as if they were SQL

● Create a very large number of named metrics
– Not much data in each metric, but the request was

for 5.3TiB of space

Sharding – take 2

● Manually maintaining regexes became painful
– Two datacenters

– 10 backend servers

● Keeping disk usage balanced was even
harder
– We didn't know who would create metrics and

when (this is a feature, not a bug)

Sharding – take 2

● Introduce hashing
● Switch from RAID 1 to RAID 0
● Store data in two locations in a ring
● Mirror rings between datacenters
● Move metrics around so we don't lose data
● Ugly shell scripts to synchronise data between

datacenters.
– http://github.com/jssjr/carbonatedoes the same

things, but is already out there.

http://github.com/jssjr/carbonate

Current status (Disk IOPS)

Using Graphite
● Graphs

– Time series data (default graphs)

– Sparklines (via API)

● Dashboards
– Developers create their own
– Overhead displays

● Additional charting libraries
– D3.js, Rickshaw

● Nagios
– Trend based alerting

– Passive checks

Current problems

● Hardware
– CPU usage

● Too easy to saturate

– Disk IO
● We saturate disks
● Reading can get a bit … slow

– Disks
● SSDs die under update load
● A disk lasts between 12 to 18 months.

More interesting problems

● Software
– The frontend melts down at a few thousand hosts in sys.*
– We have had problems recording data after upgrading whisper

● Horizontal scalability
– Adding shards is hard

– Replacing SSDs is getting a bit expensive

● People
– Want a graph, throw the data at Graphite
– Even if it isn't time series data or one record a day

Things we are looking at
● Second order rate of change alerting

– Not just the trend, the rate at which it changes

● Hbase/Cassandra/RIAK for storage
● Anomaly detection

– Skyline, etc

● Tracking even more business metrics
● Hiring people to work on such fun problems

– Developers, Sysadmins ...

– http://www.booking.com/jobs

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

