colt

Enhancing Service Provider Network Efficiency

Monika Singhvi, Product & Technology (CTO group); monika.singhvi@colt.net Approach to increase revenue and reduce capital and operational expenditure from scalable and flexible networks.

Some of the parameters influencing Network Efficiency being discussed

L3CPE

Eth / L2

CPE

vL3CPE means removing the L3 CPE router and delivering the functionality in PE Routing Platform

colt

Monitoring & Fault Detection

End-to-End QoS with vCPE

Technical Challenges with Hardware PE based vCPE

Driving factors for NFV based vCPE implementation

NFV is the key to further improve network efficiency by moving network intelligence and functions to software based deployment on generalised compute platforms to support

- Network scalability & elasticity
- Service agility & flexibility On-demand capabilities
- Automation
- Unit cost reduction
- Rapid innovation improvement \rightarrow Faster time to market

vCPE – Network Virtualization (NFV) Experience

ETSI NFV Reference Architecture

Design Considerations for Virtual Network Function (VNF)

- Elasticity
 - On demand scale in/out
- Multitenancy
 - Multiple tenants to be delivered on single VNF instance
 - Cost efficient solution
 - Resource efficient reduced number of VM and VNF
 - Segregation of traffic between tenants
- Service chaining
- License model
- Feature capability
- Interoperability with other components
- Release management lifecycle
- Support model
- Adaptability to latest technology development

colt

Design considerations for NFVI

Centralized or Distributed Deployment

Based on use case of Network Function – Node or CPE Edge

Baremetal (Better performance) or HyperVisor (Aggregated resources) Baremetal →CPE Edge Hypervisor → Node

ESXi or KVM for Virtualization KVM is open source \rightarrow more development in OPNFV

Manual management or OpenStack / 3rd party integrator Manual management for initial small deployment → low implementation effort → short term OpenStack management for integrated solution → High implementation effort → long term Third party integrator – common interface (need for customization) COI

NFV Performance bottleneck

Need for Optimal and Scalable NFVI

- Carrier grade performance
- SR-IOV
 - Optimal performance traffic bypassing the Hypervisor vSwitch
 - Challenges with portability, flexibility, QoS, complex traffic steering.
- Data Plane Development Kit (DPDK)
 - Vendor based deployment of DPDK can achieve 5-8x times performance improvement.
 - Need standardization of vendor implementation of DPDK capability
 - Line rate performance cannot be achieved for different combination.

				Frame			Throughput(Average	
		Huge Pages	2 Cores with	Length			Mbps)	DUT	Latency	
	Flows	Ram (2M)	2 threads	bytes	TX-packets	RX-packets	Bidirectonal	Load %	(mS)	Loss (%)
VM1	2k	4096	10,11,34,35	IMIX	51496874	51442520	2500	64	0.05	0.008
VM2	2k	4096	22,23,46,47	IMIX	51382170	51248143	2500	64	0.06	0.012
VM1	20k	4096	10,11,34,35	IMIX	21939472	21912378	1400	64	0.06	0.006
VM2	20k	4096	22,23,46,47	IMIX	21949776	21951686	1400	64	0.07	0.007

(Source: Colt internal lab test results)

Software Defined WAN

Benefits & Achievement

Journey so far...

colt

Thank your time