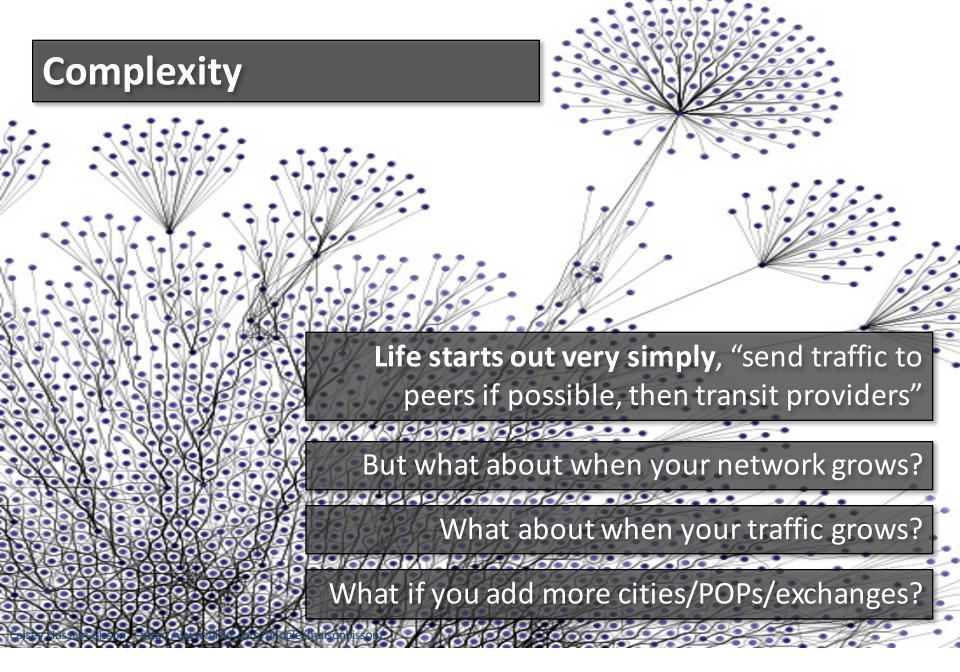

BGP Traffic Engineering


Andy Davidson

Director @ LONAP, IXLeeds, Euro-IX
Interconnection Consultant Network Studio, R&D Ask4

andy@nosignal.org

SANOG28, Mumbai, India August 2016

Real examples

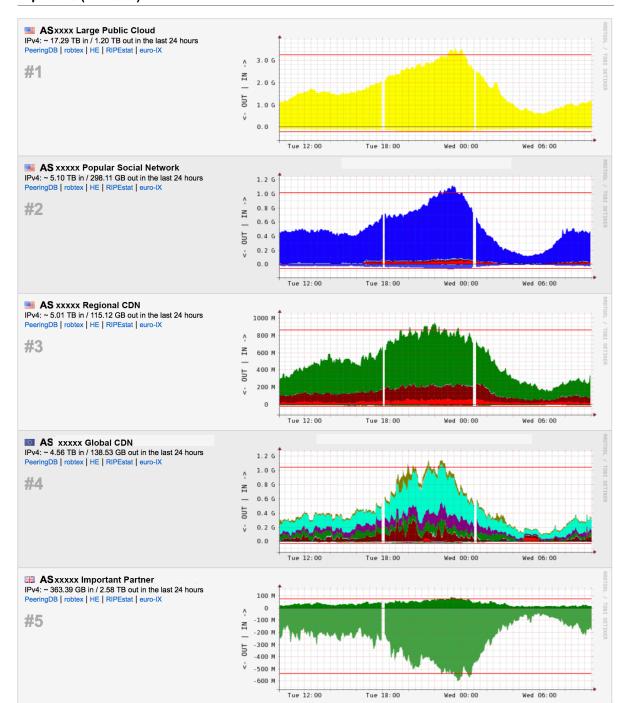
- Circuits with cost difference > \$100/Mbit
- Regional networks poor local peering
- Circuit failure causing congestion
- Changing customer demand/behaviour
 - Increased quality expectation
 - New high bandwidth services such as video

Internal network TE

Simple compared with Interdomain TE

- You administrate both sides
 - You know the price of all paths
 - The IGP knows the capacity of all paths
 - IGP protocols let you map price, capacity to shape routing using cost.

Inter-domain TE


- You do NOT control both sides
 - Path vector protocols hide metric, capacity, cost
 - Simplicity of BGP protocol imposes limitations
 - Volume of traffic matters, not # of routes
- However, large volume of traffic is usually with a small number of other ASNs

You need data

AS-Stats
Manuel Kasper
https://neon1.net/as-stats/

.. But more on this later

Top 20 AS (24 hours)

Netflow

- Export information about packets routed through your network
- Normally sampled
- Sent to a collector over UDP
- A variety of commercial and open-source tools sort and display these flow records.

Different Flow protocols

- Netflow Designed by Cisco in '90s, published as a standard (v9 is RFC3954 and supports IPv6)
- IPFIX (RFC5101) Based on Netflow 9, 2008
- sFlow Nice protocol but incompatible with Netflow, typically implemented on L2 switch.
- Jflow Essentially Netflow on Junipers

Enabling Netflow (example)

ip route-cache flow
Enables Netflow on an Interface

ip flow-export version X origin-as
Defines Netflow options

ip flow-export destination <ip> <port>
Defines the collector address

ip flow-export source loopback0

For consistent source IP addressing

6500/7600 sup720 Netflow

```
mls netflow interface
mls flow ip interface-full
mls flow ipv6 interface-full
mls nde sender
ip flow-capture mac-addresses
ip flow-export version 9 origin-as
ip flow-export destination 192.0.2.100 5500 vrf vrf-netflow
ip flow-top-talkers
interface GigabitEthernet1/1
ip flow ingress
```

Order that you enter configuration matters.

With special thanks to Nick Hilliard of INEX for this config

XR Flexible Netflow

```
flow exporter-map fem-default
version v9
  options interface-table timeout 300
 options sampler-table timeout 300
 transport udp 5500
source Loopback0
destination 192.0.2.100
flow monitor-map fmm-ipv4
record ipv4
exporter fem-default
cache entries 1000000
sampler-map sm-flow-default
random 1 out-of 100
interface TenGigE0/0/2/2
 flow ipv4 monitor fmm-ipv4 sampler sm-flow-default ingress
router bgp 65533
address-family ipv4 unicast
 bgp attribute-download
```

With special thanks to Nick Hilliard of INEX for this config

Brocade Netflow

```
sflow enable

sflow source loopback 1 8888

sflow destination x.x.x.x

sflow polling-interval 30

interface Ethernet1/1 to 1/4

sflow forwarding
```

Other ways to get data

- Log file analysis
 - Useful before you have a network, for working out the benefit of building a network/peering.
 - Best for 'single service' networks
 - DNS providers have DNS logs with time & IP
 - Web providers have web logs with time & IP
 - Hosted email providers have mail logs...

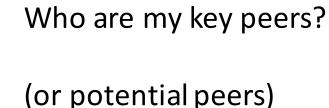
```
90.155.42.152 - - [01/Sep/2013:19:09:50 +0100] "GET /mrtg/lonap-total-day.png HTTP/1.1" 304 189 "http://screen.aa.net.uk:81/opsin
fo.cgi" "Mozilla/5.0 (X11; Linux armv6l) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.94 Safari/537.4"
2001:67c:1a8:100::8 - - [01/Sep/2013:19:10:10 +0100] "GET /euroixstats.php HTTP/1.1" 200 212 "-" "Ruby"
2001:67c:2e8:11::c100:137a - - [01/Sep/2013:19:10:10 +0100] "GET /euroixstats.php HTTP/1.0" 200 193 "-" "Wget/1.12 (linux-gnu)"
                                                               "GET /mrtg/lonap-total.html HTTP/1.1" 200 6782 "" "Mozilla/5.0 (Windows NT 6.1; WOW
90.155▲42.152 - - [01/Sep/2013:19:▲0:29 +0100] "GET /mrtg/lonap-total-day.png HTTP/1.1" 200▲5216 "http://screen.aa.net.uk:81/opsi
          " "Mozilla/5.0 (X11; Linux rmv6l) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0 1229.94 Safari/537.4"
2a02:61:0:1102::1 - - [01/Sep/2013 19:10:59 +0100] "GET / HTTP/1.1" 200 7525 "-" "check_http/v1.4.15 (nagios-plugins 1.4.15)"
90.155.42.152 - - [01/Šep/2013:19:1:33 +0100] "GÉT /mrtg/lonap-total-day.png HTTP/1.1" 200 5216 "http://screen.aa.net.uk:81/opsi
nfo.cgi" "Mozilla/5.0 (X11; Linux rmv6l) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0 1229.94 Safari/537.4"
128.208.2.156 - - [01/Sep/2013:19:1:02 +0100] "POST /cgi-bin/mrlg.cgi HTTP/1.1" 200 2615 "
                                                                                                                               ttp://www.lonap.net/cgi-bin/mrlg.cgi'
 "Mozi la/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.11) Gecko/20071127 Firefox/2.0. .11
90.155.42.152 - [01/Sep/2013:19:12:18 +0100] "GET /mrtg/lonap-total-day.png HTTP/1.1" 304 189 "http://screen.aa.net.uk:81/opsin fo.cgi" "Mozilla/5.0 (X11; Linux armv6l) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.94 Safari/537.4" 2a02:68:0:1502::1 - [01/Sep/2013:19:13:13 +0100] "GET / HTTP/1.1" 200 7525 "-" "check_htt;/v1.4.15 (nagios-plugins 1.4.15)" 90.155.42.152 - [01/Sep/2013:19:13:17 +0100] "GET /mrtg/lonap-total-day.png HTTP/1.1" 304 189 "http://screen.aa.net.uk:81/opsin
fo.cgi"
           "Mozilla/5.0 (X11; Linux ar nv6l) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.94 Safari/537.4"
   IP Address
                                         Time and date
                                                                                                                Amount of Traffic
```

Other ways to get "data"

Wild Guess

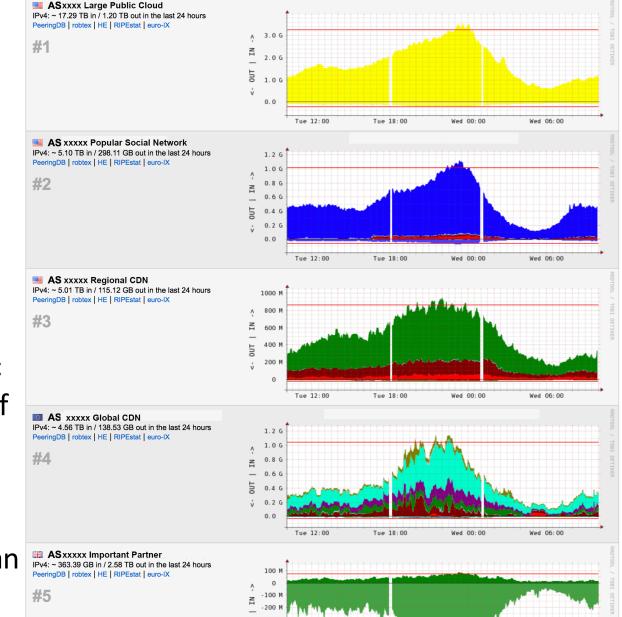
- Your instinct is better than you think?
- Content networks will talk to eyeballs
- Eyeball networks will talk to content
- Confirm with top talkers, etc.
- But you should use Netflow. ☺
 - Early "quick wins" may provide hard data
 - Hard data provides stronger business case

Data tells you


- Your traffic direction
 - Mainly inbound
 - Mainly outbound
 - Balanced
- Your top traffic originators or destinations

As-stats

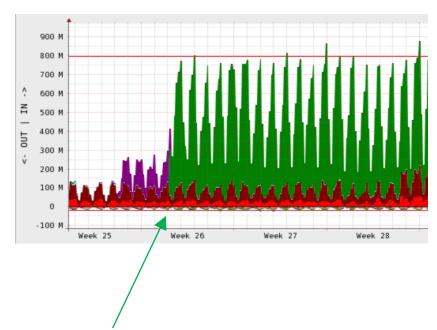
https://neon1.net/as-stats/


- Open source
- Quick to setup, simple to use
- Resource intensive

Top 20 AS (24 hours)

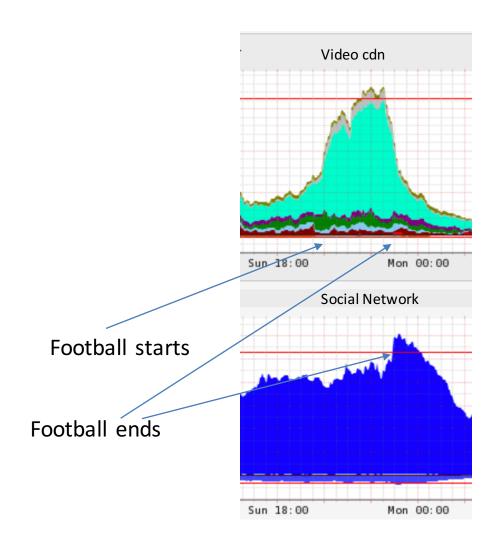
Top originators of traffic to me, top consumers of my content

Chart colour relates to an interface on the edge of my network


-400 M -500 M -600 M

Tue 12:00

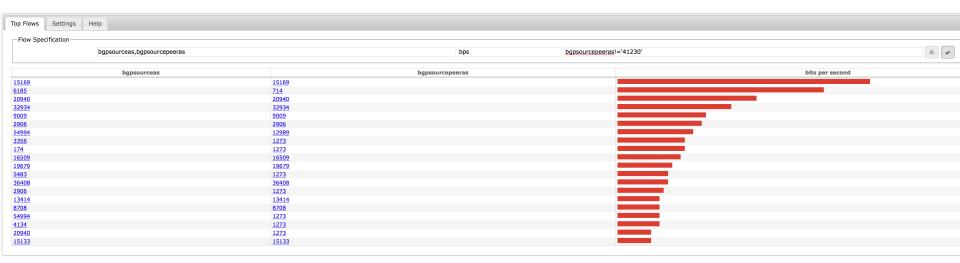
Tue 18:00


Wed 06:00

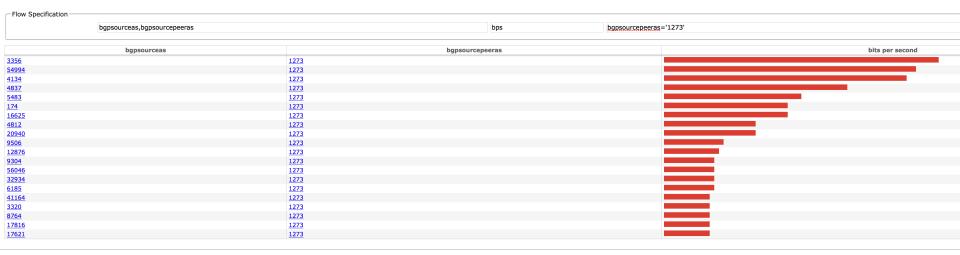
Historical data

New peering added, traffic growth! = \$\$\$\$ for my network!

Bonus please!



Inmon sflow-rt


http://www.sflow-rt.com/download.php

- Produces realtime traffic graphs
- "What is the situation right now"
- Useful to check peering config has taken effect
- Also useful in abuse mitigation

Realtime aggregate data

Realtime transit analysis

Export from Sflow-RT

 RESTful export into logstash/influxdb/grafana for historical data

http://www.slideshare.net/pphaal/network-visibility-and-control-using-industry-standard-sflow-telemetry

pmacctd

http://www.pmacct.net

- Open Source
- High performance, high scale, powerful
- Most flexible, most configuration required

Collector → own reports

1) Configure a collector

```
sfacctd port: 2100
sfacctd as: sflow
sfacctd renormalize: true
plugins: print[testprint]
aggregate[testprint]: in iface, out iface, proto, peer src ip,
peer dst ip, peer dst as, peer src as, src as, dst as
print output file[testprint]: /path/to/spool/blabla-$peer src ip-
%Y\%m\%\overline{d} - \%H\%M \cdot \overline{t} \times t
print output[testprint]: csv
print output separator[testprint]: ;
print refresh time[testprint]: 60
print history[testprint]: 1m
print history roundoff[testprint]: m
```

Use the ASN data from the router if it exists, no need to setup BGP flow export

2) Get a report

```
SRC_AS;DST_AS;PEER_SRC_AS;PEER_DST_AS;PEER_SRC_IP;PEER_DST_IP;IN_IFACE;OUT_IFACE;PROTOCOL;PACKETS;BYTES

41230;224;41230;2603;x.x.x.253;x.x.x.246;3;4;tcp;2048;151552

41230;15169;41230;15169;x.x.x.253;x.x.x.246;3;4;tcp;10240;880640

41230;50247;41230;24724;x.x.x.253;x.x.x.246;3;4;tcp;2048;167936

41230;9269;41230;1273;x.x.x.253;x.x.x.237;3;3;tcp;2048;135168

41230;3356;41230;1273;x.x.x.253;x.x.x.237;3;3;tcp;32768;2375680

41230;209;41230;1273;x.x.x.253;x.x.x.237;3;3;udp;2048;2940928

20940;0;20940;0;x.x.x.253;x.x.x.246;3;4;tcp;43008;65458176
```

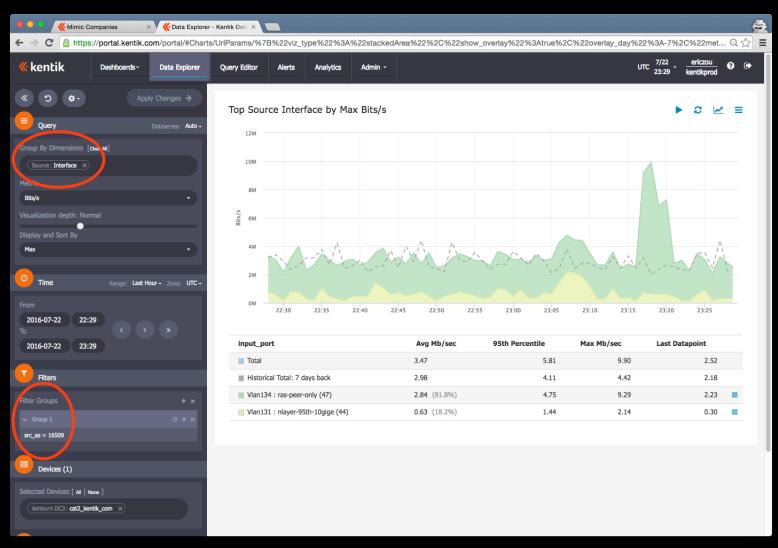
Red line represents a single flow with Google on behalf of a user

Keeping historical data

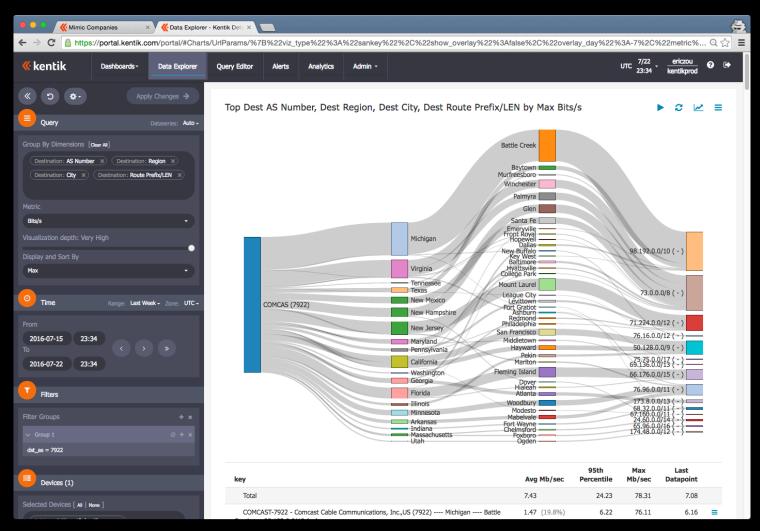
```
plugins: mysql[5mins], mysql[hourly]
sql optimize clauses: true
sql dont try update: true
sql multi values: 1024000
sql history roundoff[5mins]: m
sql history[5mins]: 5m
sql refresh time[5mins]: 300
sql table[5mins]: acct bgp 5mins
sql history roundoff[hourly]: h
sql history[hourly]: 1h
sql refresh time[hourly]: 3600
sql table[hourly]: acct bgp 1hr
plugin buffer size: 10240
plugin pipe size: 1024000
aggregate: tag, src as, dst as, peer src as, peer dst as, peer src ip,
                                             peer dst ip, local pref, as path
```

Example by pmacct author Paolo Lucente

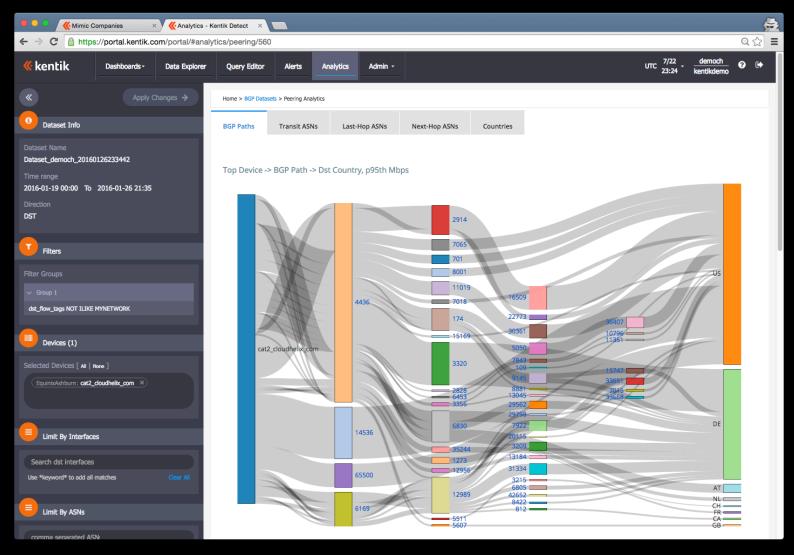
```
mysql> SELECT * FROM int tm-20130803 1400 LIMIT 10;
| iface in | peer ip src | peer ip dst | peer dst as | stamp inserted | bytes |
                                                                           859 I
      212 | 10.0.0.107
                         1 10.0.0.3
                                                      03-08-2013 14:00 |
                                              65000 I
      212 | 10.0.0.107 | 10.0.0.253 |
                                                                          5358 I
                                              65001 I
                                                      03-08-2013 14:00 |
      212 I
            10.0.0.107 | 10.0.0.234
                                              65002 I
                                                      03-08-2013 14:00 |
                                                                          6181 I
      212 I
            10.0.0.107 | 10.0.0.251
                                              65003 | 03-08-2013 14:00 |
                                                                         27002 I
      205 | 10.0.0.107 | 10.0.0.233 |
                                              65004 | 03-08-2013 14:00 |
                                                                          1200 I
      258 I
            10.0.0.107 | 10.0.0.240
                                              65005 | 03-08-2013 14:00 |
                                                                           560 I
            10.0.0.107 | 10.0.0.252
                                              65006 | 03-08-2013 14:00
                                                                         62682 I
      212 I
      212 | 10.0.0.107 | 10.0.0.234
                                              65007 | 03-08-2013 14:00 |
                                                                          3843 I
      212 I
            10.0.0.107 | 10.0.0.17
                                              65008 I
                                                      03-08-2013 14:00
                                                                          21074 I
            10.0.0.107
                          10.0.0.254
                                               65009
                                                      03-08-2013 14:00
                                                                          2023 I
       205 I
```


- Export into reports, web interface, spreadsheet
- Multiple back ends supported, including time series databases
- Very flexible approach but needs more setup time

Kentik


https://www.kentik.com

- Hosted solution
- Zero configuration, zero equipment needed
- Point Netflow at their collector and reports follow

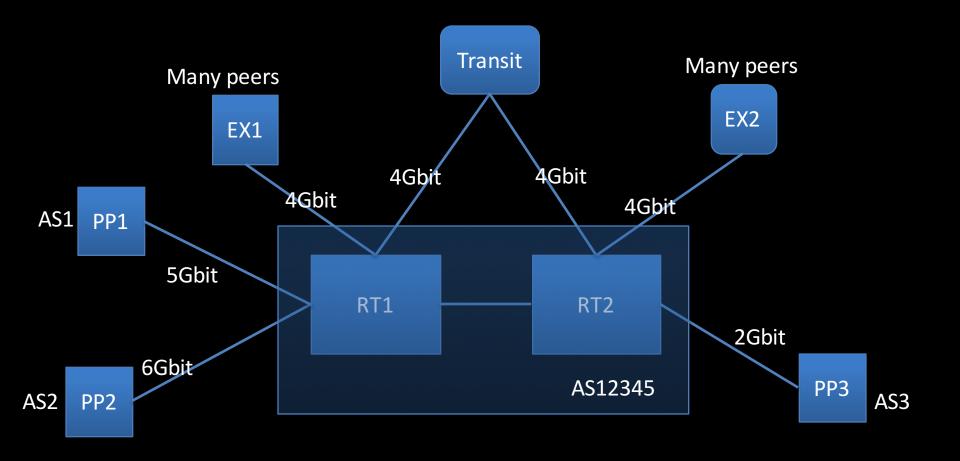

Traffic by Source ASN

Breakdown by region (US)

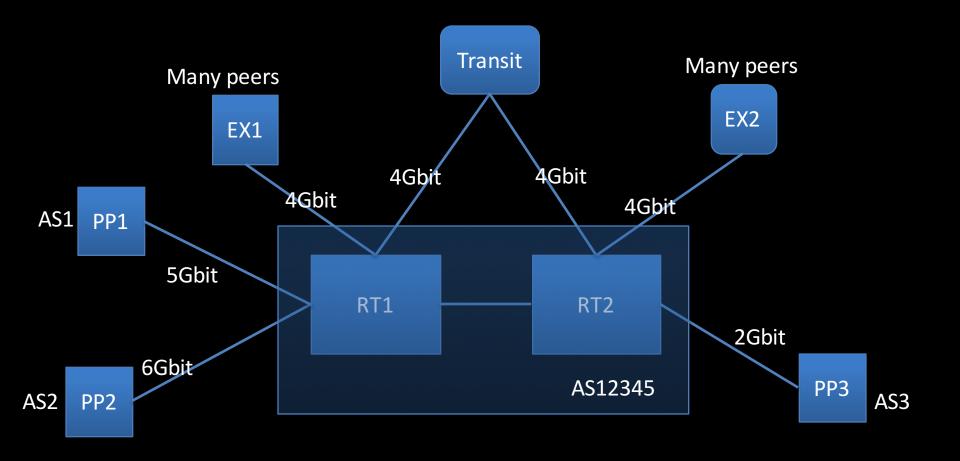
Top flows per interface

Outbound vs Inbound

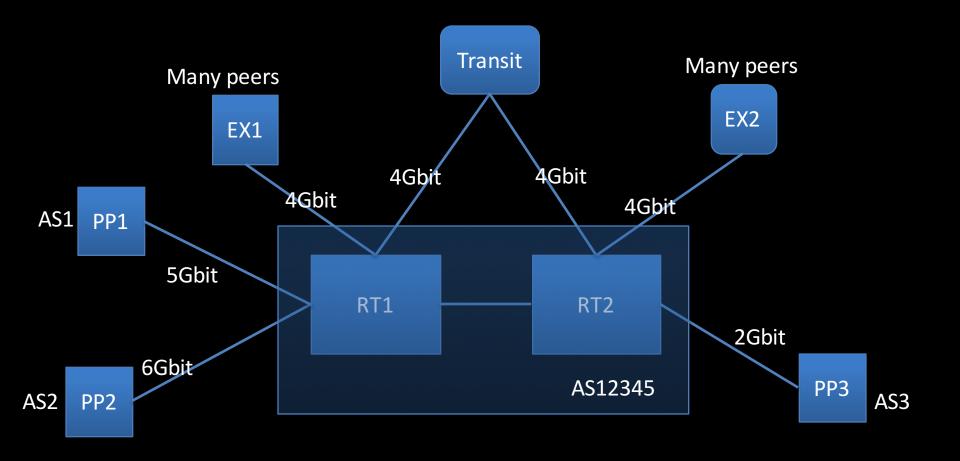
- Outbound heavy networks
 - Somewhat easier life
- Inbound heavy networks
 - You must trick the Best Path Selection methods of networks sending you traffic.
 - Their config change will move your traffic.


BGP Best Path Selection Algorithm

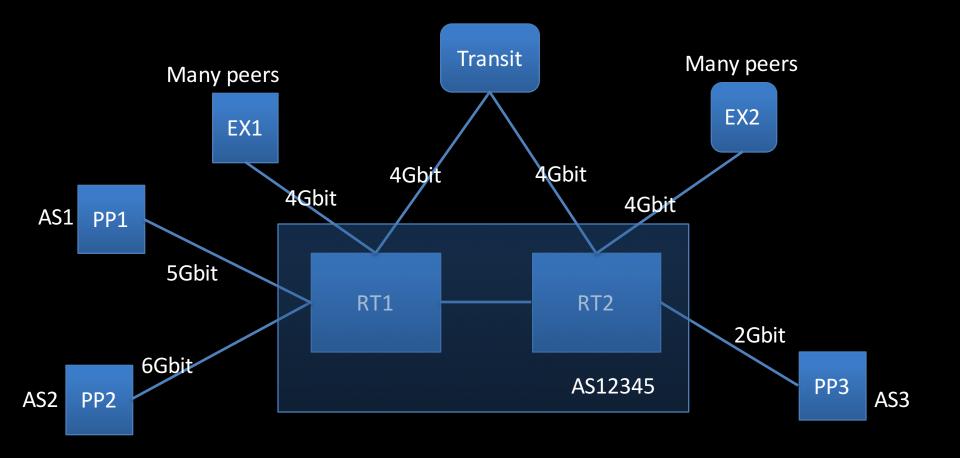
- Traffic engineering is about 'tricking' this process
- Affects traffic in outbound direction
 - Local Preference
 - AS PATH length
 - Lowest Origin Type
 - Lowest MED
 - Prefer eBGP paths
 - Lowest IGP Metric
 - Oldest route


Mainly outbound, single POP

Localpref


- A hammer blunt tool, inflexible.. But it is a tool.
- "Generally" prefer to send traffic to customers, then peers, then transits.
- Manage top 'n' networks, so that there is a preferred path, and a failure path, with capacity on both circuits.

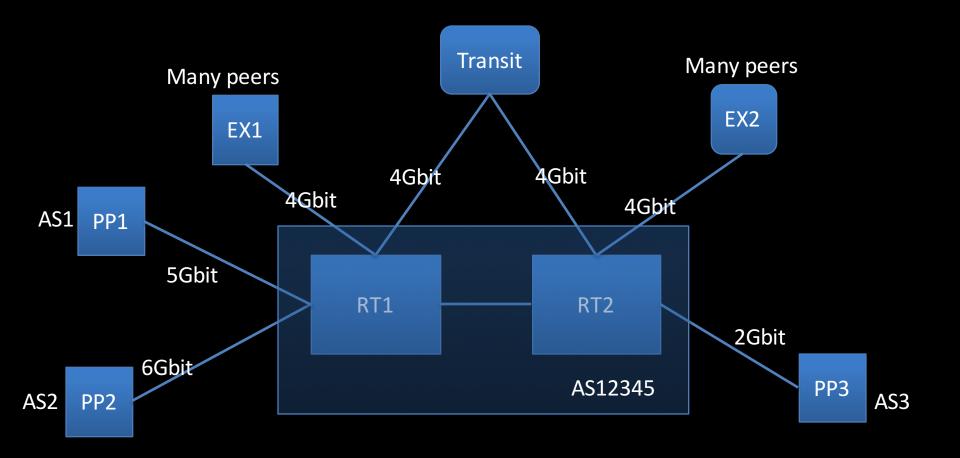
AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2?


AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2? AS1 via PP1, configure a backup over EX1 or EX2 for deterministic routing?

AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2?

AS1 via PP1, configure a backup over EX1 or EX2 for deterministic routing?

Can you move larger peers behind EX1 and EX2 onto private peering?

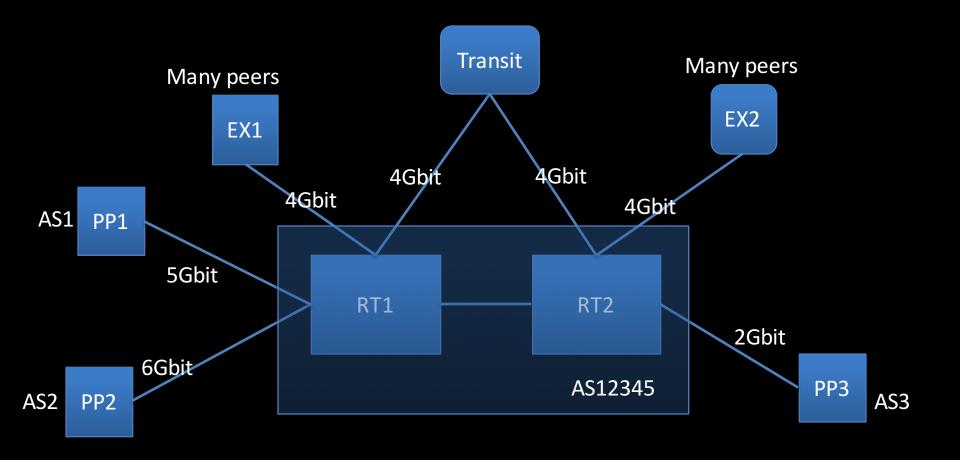


AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2?

AS1 via PP1, configure a backup over EX1 or EX2 for deterministic routing?

Can you move larger peers behind EX1 and EX2 onto private peering?

If there is an exchange failure, where will the traffic go? How big a flow should you care about?


AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2?

AS1 via PP1, configure a backup over EX1 or EX2 for deterministic routing?

Can you move larger peers behind EX1 and EX2 onto private peering?

If there is an exchange failure, where will the traffic go? How big a flow should you care about?

If you lose RT2, how will traffic to PP3 and traffic volume via EX2 be delivered?

AS2 is your largest flow - via PP2 - maybe needs a second private peer backup on RT2?

AS1 via PP1, configure a backup over EX1 or EX2 for deterministic routing?

Can you move larger peers behind EX1 and EX2 onto private peering?

If there is an exchange failure, where will the traffic go? How big a flow should you care about?

If you lose RT2, how will traffic to PP3 and traffic volume via EX2 be delivered?

If you lose RT1, how will traffic volume via PP3 and EX1 be delivered?

Localpref – blunt hammer

10.0.0.0/8 Localpref 100 via 100 123 10.0.0.0/8 Localpref 500 via 300 200 200 200 200 123

```
Which link will you prefer ?
AS123 here is trying to shape inbound traffic via AS100. Why ?
Higher capacity link ?
More reliable ?
```

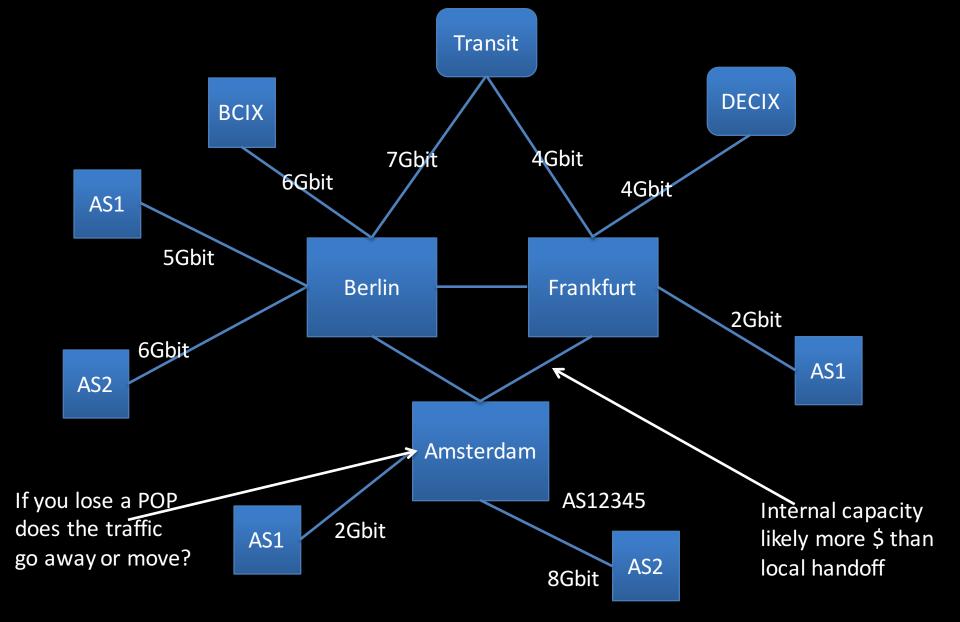
What should you do?

Answer: It depends on the volume of traffic, cost of capacity, value of traffic

Configuration Example

Larger flows are in ASNs Listed in as-path 30 and 40

Deterministic exits configured


ip as-path access-list 30 permit _7018_ ip as-path access-list 30 permit _2828_ ip as-path access-list 30 permit _4323_ ip as-path access-list 30 permit _3561_ ip as-path access-list 30 permit _1668_ ip as-path access-list 40 permit _3330_

route-map PEER_EX1 permit 10
match as-path 30
set local-preference 300
route-map PEER_EX1 permit 15
match as-path 40
set local-preference 200
route-map PEER_EX1 permit 20
set local-preference 150

route-map PEER_EX2 permit 10
match as-path 40
set local-preference 300
route-map PEER_EX2 permit 15
match as-path 30
set local-preference 200
route-map PEER_EX2 permit 20
set local-preference 150

Mainly outbound – Many POPs

- Use hot potato routing to best effect
 - Nearest exit routing
 - Understand who your top traffic sinks are and peer at all POPs
 - Ignore MEDs from others unless you want to carry the traffic on your backbone

If you understand your top flows, you will cope with traffic growth and failures

Deterministic routing

- Local Preference
- AS PATH length
- Lowest Origin Type
- Lowest MED
- Prefer eBGP paths
- Lowest IGP Metric
- Oldest route

Top flows should leave your network via deterministic means, and not left to BGP Best Path selection (or to chance).

If you are relying on oldest route to make the decision, you risk traffic taking unpredictable routes.

However, oldest routes do break the 'flapping sessions' problem. You need to monitor and manage your top flows constantly.

Inbound traffic engineering

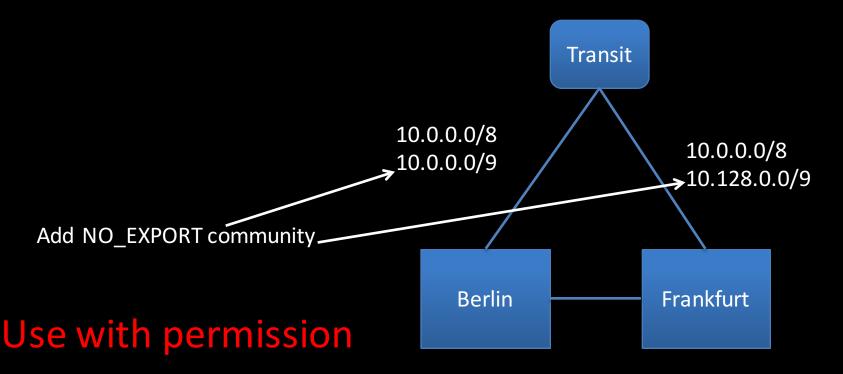
- Much harder
 - Trick others' Best Path calculations
 - You do not administrate origin party router
- But remember...
 - Largest flows come from a small number of networks
 - Content networks want to deliver traffic to you as well as possible!

Selective Announcements

Shortest prefix

- Local Preference
- AS PATH length
- Lowest Origin Type
- Lowest IVIED
- Prefer ePGP paths
- Lowert IGP Metric
- Olestroyle

Prefix length considered before BGP.


10.0.0.0/16 vs 10.0.0.0/17 & 10.128.0.0/17

Problem of Selective Announcements

- Often filtered
- Considered rude might lead to depeering
- Never announce 'globally'

...But can be used to great effect

 To the same peer or transit provider, announce aggregate and regional pfx

AS_PATH prepending

- Signal preferred path by growing AS_PATH on less preferred paths
- Marginal effect which degrades quickly
- Signal backup link to a single AS, but loadbalancing capacity is much harder
- May not be heard at 'distant' ASNs
- Another 'blunt' tool, but can move some traffic.

2.5 AS Path Prepending

AS path prepending is a common way of making routes less attractive since AS path length is usually one of the BGP path selection criteria. A customer network may use these communities to selectively request AS3320 to insert additional copies of the AS number 3320 when propagating the customer routes to neighbors.

Community Value	Name	Description
65012:X	AS Prepend 2x to AS X	Prepend 3320 two times to named peer (ASN=X)
65013:X	AS Prepend 3x to AS X	Prepend 3320 three times to named peer (ASN=X)
6501n: 65001	AS Prepend by Class: Peer	Prepend 3320 n times to peers. n=2 or 3.
6501n: 65002	AS Prepend by Class: Upstream	Prepend 3320 n times to upstream.
6501n: 65003	AS Prepend by Class: Peer &	Prepend 3320 n times to peers and upstream.
	Upstream	
6501n:65004	AS Prepend by Class: Customer	Prepend 3320 n times to customers.
6501n: 65005	AS Prepend by Class: Customer	Prepend 3320 n times to customers and peers.
	& Peer	
6501n: 65006	AS Prepend by Class: Customer	Prepend 3320 n times to customers and upstream.
	& Upstream	
6501n:65007	AS Prepend by Class: All	Prepend 3320 n times to all AS3320 neighbors.

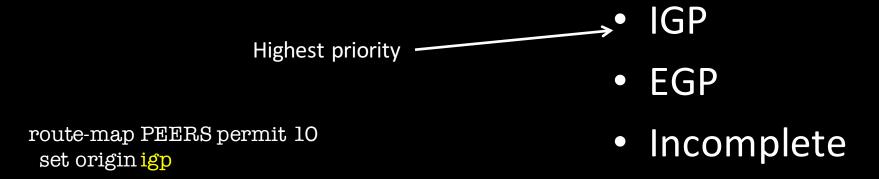
Community Value	Name	Description
65001 : 100	Standard Local Preference	Set Local Preference to 100 (default).
65001 : 50	Low Priority Local Preference	Set Local Preference to 50.
65001 : 150	High Priority Local Preference	Raise Local Preference value to 150. Requires authori-
		zation from AS3320 backbone engineering.

2.4 Restrict Route Propagation

A customer network may use these communities to restrict propagation of its routes to AS3320 peers. However, the well known community NOPEER should be employed instead of these where appropriate.

Community Value	Name	Description
65010 : X	No Export to AS X	Do not advertise route(s) to named AS3320 peer (ASN=X)
65010:65001	No Export by Class: Peer	Do not advertise route(s) to AS3320 peers.
65010:65002	No Export by Class: Upstream	Do not advertise route(s) to AS3320 upstream.
65010:65003	No Export by Class: Peer &	Do not advertise route(s) to AS3320 peers and upstream.
	Upstream	

MEDs


- Lowest MED wins.
 - Opposite of Nearest Exit routing, "carry traffic to me"
 - Only works to the same peer in multiple regions
 - Copy IGP metric to MED
 - Normally subject to negotiation
- Sometimes honoured, often when network traffic is latency or loss sensitive.

MEDs are often filtered

 Many networks set MED to 0 when they learn prefixes, so that hot potato routing will override MED.

```
route-map peers-in permit 10
set local-preference 200
set metric 0
```

Origin changing

route-route-map TRANSIT permit 10 set origin incomplete

Often peers set to 'igp' or 'egp' statically on routers to nullify effects of Origin changing.

Inbound – what does work well?

- Overprovisioning
- Peer with top networks widely (buy options!)
 - Failure of single link will not break adjacency
 - Failures can be handled in predictable ways
- Build relationships
- Constantly monitor and manage
- If you care about your traffic, let it go. ©
 - Playing games with peering hurts your customers' traffic
- Affecting distant ASNs is very hard a region may only see a single next-hop ASN.

What does "manage relationships" mean?

- Go back to your data
 - Collect and share information with peering coordinators at forums like this
 - You will stand out if you know exactly how much traffic you will exchange at peak with a peer
 - Protect your peer's interests
 - Discuss mutual points of interconnection that suit both
 - Respond to abuse complaints promptly
 - Use contacts to reach other peering co-ordinators
 - Respond promptly to BGP session down/flapping
 - List your network on PeeringDB!

Buying transit in a smart way

- Buying from a well peered transit provider:
 - Can improve quality for the reasons discussed
 - Hides capacity problems from you automatically
- Buying from your top traffic destination
 - If your business relies on the traffic quality, it may make sense to pay
 - Data may help you negotiate good terms

Dealing with a "no" to peering

- Paid peering is one option
 - Often more expensive than full IP transit
 - "Once a customer, never a peer"
- Pay for other services in return for peering
 - Transport for example
- Peer around the problem
 - Try to peer directly with downstream customers
 - Try to sell directly to downstream customers
 - If you are better peered, you can sell based on quality

Aggregate transit & peering capacity

- Buy transit/peering capacity through a reseller who can offer many providers on a single link
 - Different providers presented on separate VLANs
 - Failures in a transit or peering will result in traffic shifting to another provider on same link
 - Access to multiple providers on single commit?
 - Not available everywhere, but Allegro offer this in London
- Does not replace need for backup to reseller

Constantly manage

- Peering on the Internet changes every day.
- Capacity on the Internet grows every day.
- Small networks become large.
- Large networks become larger (consolidation)
- A "bad" path might become good overnight

Questions?

Andy Davidson andy@nosignal.org

Email me to request a copy of this presentation!

Feedback and introduction to peering co-ordinators welcome

Twitter: @andyd