QoS on Low Bandwidth High Delay Links

Prakash Shende Planning & Engg. Team – Data Network Reliance Infocomm

Agenda

- QoS Some Basics
- What are the characteristics of High Delay Low Bandwidth link
- What factors of applications are affected
- Behaviour of High Delay on Data Streams
- Behaviour of High Delay on RTP or voice Streams
- QoS considerations in such environment
- Test Setup & Some Test Results
- Implementation strategies
- Conclusions

QoS Basics

- 1. TDM Systems
 - Dedicated resources end to end
 - Whatever comes in has a guarantee to go out
 - No resource congestions
- 2. Data Systems
 - Packets come in & go out of different interfaces depending to lookup in Data devices
 - Oversubscriptions offers commercial advantages
 - Packet exit rate may be more than the physical capacity of the port
 - Resulting in resource congestions

QoS Basics ...contd.

- Data devices use buffers to manage congestion within some limits
- FIFO (First In First Out) is one of the simplest buffering strategy
- Buffer size is function of
 - Link Speed
 - Protocol
- FIFO results in Best effort environment

QoS Basics ...contd.

- What happens when some traffic needs to given special treatments on various vectors like
 - Bandwidth / Throughput
 - Delay
 - Loss
 - Jitter
- We come to QoS environment
- QoS is "Managed Unfairness"

QoS Basic ... Throughput / Bandwidth

- Throughput / Bandwidth has different connotations for different people
 - Physical layer Bit rate
 - Application Layer FTP throughput User view
 - Host to host aggregate flow Administrator view
 - Network to network aggregate flow Operator view

QoS Basics Delay

Various contributors to delay are:

- Serialization delay (fixed)
- Propagation delay (fixed)
- Queuing delay (variable)
- Forwarding/processing delay (variable)
- Shaping delay (variable)
- Codec delay (fixed)
- Compression delay (variable)

QoS Basics ... Loss

- Loss of packets or information can be attributed to
 - Bad Link Quality
 - Resource crunch (Congestion)
 - Results in bad user experience
 - Application run slower
 - Lesser throughput

QoS Basics ... Jitter

- Variation in the arrival rate of data packets that were transmitted in uniform manner
- Different from the Delay
- Mostly prominent in the voice application (isochronous traffic)

QoS Basics... Summary

- QoS involves, giving service deliveries on following vectors
 - Throughput / Bandwidth guarantee of required availability
 - Delay As minimum as possible
 - Jitter As minimum as possible
 - Loss No loss

High Delay Low Bandwidth links

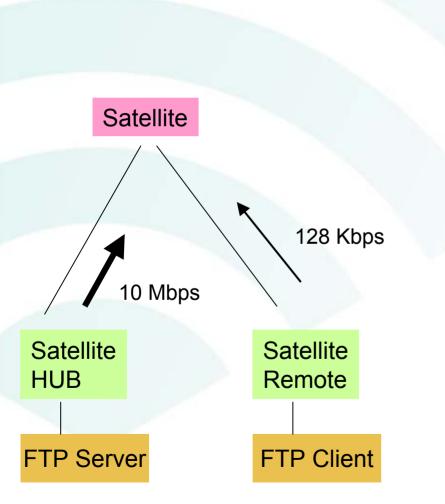
- Transport of such links are characterized by high delay
- Satellite links
- Generally have low bandwidth
- Low bandwidth is subjective from end application perspective
- A 400 Kbps links is low bandwidth from SP perspective, but is very high bandwidth from Enterprise perspective
- End Application drive requirements

Affecting factors

- Impact of Delay
 - User experience
 - Pronounce on the TCP based application
- Impact of low bandwidth
 - Bandwidth to be efficiently used
 - Giving high priority to most critical applications

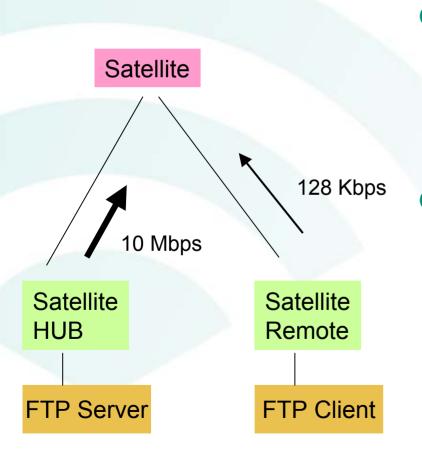
QoS Considerations ...

- RTP or voice traffic streams
 - Should have zero drop rate
 - Minimum queuing delay
- TCP or Data traffic streams
 - TCP windowing mechanisms need to be fine tuned
 - Can have drop rates, as the end systems will allow retransmissions



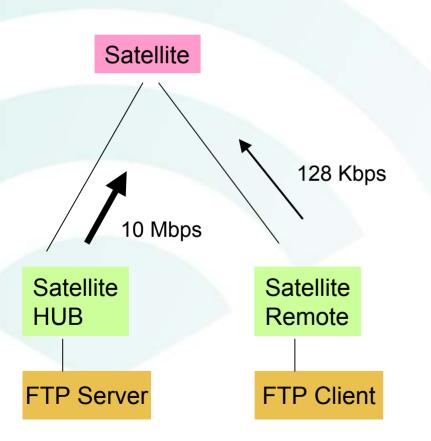
Effect of Delay on Data or TCP streams

- TCP involves acknowledgment mechanism
- So the round trip time comes into picture
- On High Delay links the round trip time (RTT) will be higher
- Higher the RTT slower will be acknowledgment & feedback mechanism
- Will result in slower data transfer & lower application throughput
- Will consider an example


Illustration of lower throughput

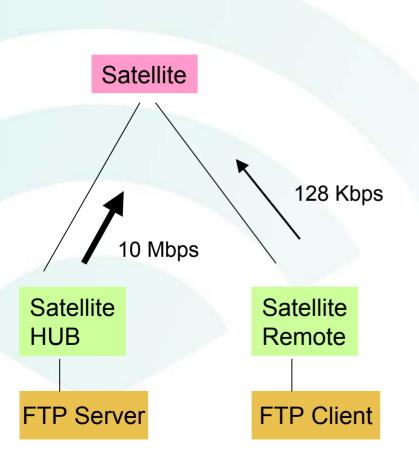
- Forward bandwidth available in 10 Mbps
- Reverse 128 Kbps
- If single hop RTT is 500 ms
- If the TCP window on the End TCP systems is 16 KB
- FTP client wants to download file from FTP server

Illustration of lower throughput (Contd...)


 Theoretical throughput formula is
T = (Window Size) / (RTT)

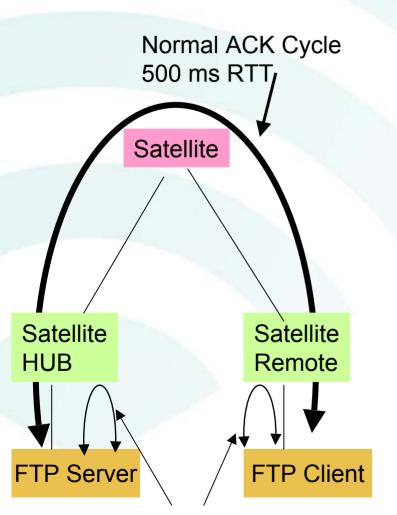
Putting the values

– T = 256 Kbps


Illustration of lower throughput (Contd.)

- So Even if
 - the whole of 10 Mbps forward path is fully free
 - The servers & clients is fully idle (I.e with no cpu/memory crunch)
 - A single FTP session cannot pump traffic beyond 256 Kbps, in the said environment
 - Only 2-3 % of capacity being used

Illustration of lower throughput (Contd.)


SANOG VII Mumbai INDIA 16 – 24 Jan 2006

So What is the solution?

- Have many such FTP sessions to spawn the bandwidth
 - Discouraged by users
 - Increase windows size
 - Cumbersome, involves config tweak on end systems
 - Strongly discouraged by users
 - Window can be upto 64 KB only (on account of 16 bit counter in IP header)
 - Some Operating System like Windows use options field in IP packet to have higher size effective window

Illustration of lower throughput (Contd.)

- So What is the solution? continued...
 - Reduce the RTT 🙂
 - Can't go against the laws of physics
- But we can fool the end systems
- The local satellite interfaces acknowledge the packets
- thereby considerably reducing the RTT & increasing the throughput
- This is called spoofing

SANGO VIENIA MANAION DIA 11 m 24 Jan 2006

- Thus we have seen that by Spoofing we can increase the throughput on single FTP session
- But the satellite systems should support the capability
- Major satellite system vendors like Hughes / Gilat support spoofing in their own ways

Another Challenge for high delay Data streams

- If the end application is chatty I.e. a lot of handshake happens between the client & server
- In the high delay environment a lot of the time goes in the above handshake
- Eventually application response suffers drastically giving a bad user experience
- No amount of spoofing helps
- Applications need to modified / rewritten to reduce the chatty nature

Summary : Data Streams on Satellite links

- Gives lesser TCP throughput on account of high delay
- The problem can be overcome by spoofing
- For Chatty applications, the chatty nature needs to be reduced

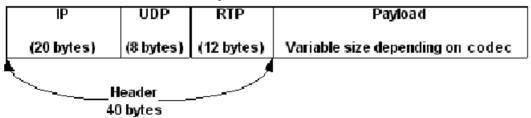
Considerations for the RTP traffic (Voice)

- RTP traffic or voice is real time characteristics
- Isochronous nature
- Small sized packets
- Low bandwidth per voice session
- Intolerable to Jitter / loss
- Should have as minimum latency as possible

Voice on Low Speed links

- Voice when put on IP inherently takes more bandwidth as can be seen as under (with the assumption of 50 pps)
- Majority of the bandwidth is taken by IP/RTP overheads
 - To transmit a payload of 20 bytes, the ultimate packet size becomes upto 80 bytes on Ethernet
 - Huge Waste
 - Scope of improvement
 - Concept of cRTP comes into picture

		Рау	RTP	UDP	IP	L2	Total	Total
Sr.No.	Details	Load	Header	Header	Header	Header	Bytes	Kbps
1	On Ethernet	20	12	8	20	18	78	31.2
2	On WAN Link without cRTP	20	12	8	20	6	66	26.4
3	On WAN Link with cRTP	20		4		6	30	12



Voice on Low Speed links (Contd..)

- cRTP compresses the redundant 40 bytes IP/RTP header to 4 bytes
- Reduces the per voice call bandwidth requirement considerably

		Pay	RTP	UDP	IP	L2	Total	Total
Sr.No.	Details	Load	Header	Header	Header	Header	Bytes	Kbps
1	On Ethernet	20	12	8	20	18	78	31.2
2	On WAN Link without cRTP	20	12	8	20	6	66	26.4
3	On WAN Link with cRTP	20		4		6	30	12

Before RTP Header Compression

After RTP Header Compression

Header	Payload
(2 or 4	
bytes)	Variable size depending on codec

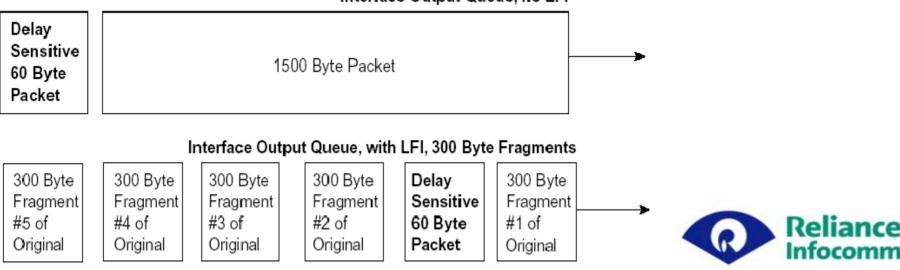
Concept of Serialization Delay

- Router takes some finite time to serialize the packet
- The time is inverse function of bandwidth on serial link
- And direct function of packet size to be transmitted
- The table shows the amount of delay
- On account of serialization delay the link is hogged up for a finite amount of time

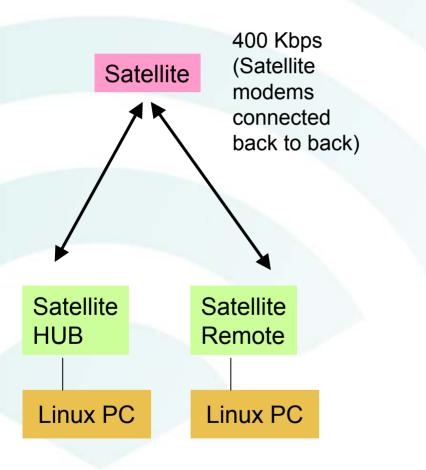
Serialization Delay Table

	1 Byte	64 Bytes	128 Bytes	256 Bytes	512 Bytes	1024 Bytes	1500 Bytes
56 kbps	143 us	9 ms	18 ms	36 ms	72 ms	144 ms	21 4 ms
64 kbps	125 us	8 ms	16 ms	32 ms	64 ms	126 ms	187 ms
128 kbps	62.5 us	4 ms	8 ms	16 ms	32 ms	64 ms	93 ms
256 kbps	31 us	$2 \mathrm{ms}$	$4\mathrm{ms}$	8 ms	16 ms	32 ms	46 ms
512 kbps	15.5 us	1 ms	2 ms	4 ms	8 ms	16 ms	$32 \mathrm{ms}$
768 kbps	10 us	640 us	1.2.8 ms	2.56 ms	5.12 ms	10.24 ms	15 ms
1536 kbps	5 us	320 us	640 us	1.28 ms	2.56 ms	5.12 ms	7.5 ms

Effect of Serialization Delay

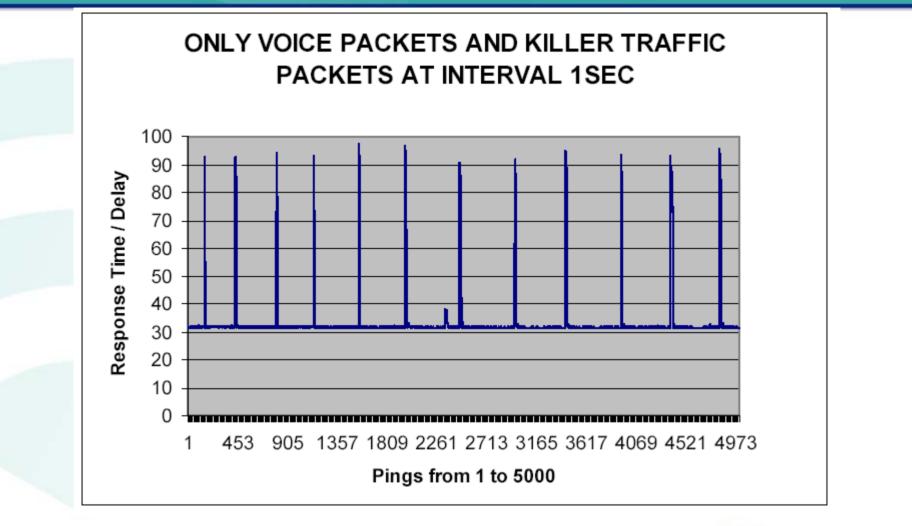

- When Data & Voice application are simultaneously sharing the low bandwidth link
- Because of serialization delay jitter will be introduced inspite any kind of qos
- What's the solution, to break Bigger size packets into smaller
- This is nothing but the concept of LFI
 - Link Fragmentation & interleaving
 - Illustrated as under

LFI Illustration

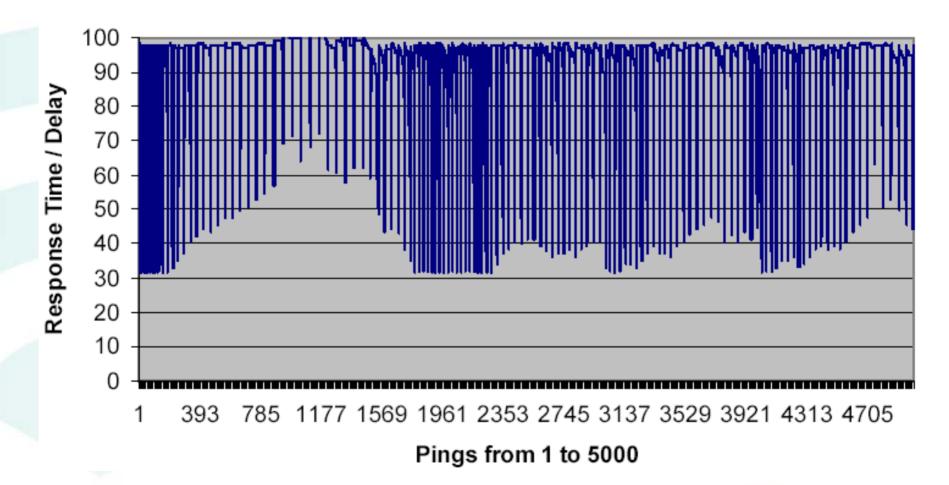

- A giant 1500 byte packet will hog up the link (equivalent to serialization delay)
- Such high bytes traffic can potentially kill low bytes traffic
- So can be called as killer traffic
- Will create jitter issues for the RTP streams
- With LFI, the bigger size packets are cut into smaller size packets, reducing the jitter

The following image illustrates the operation of LFI:

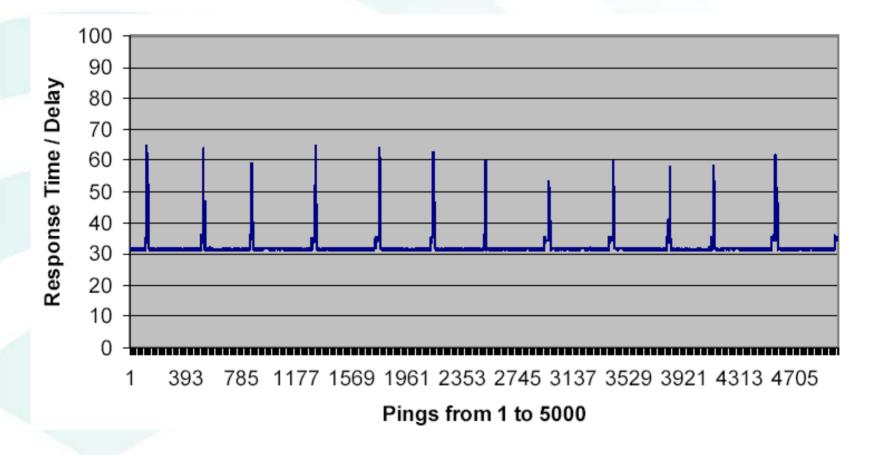
Interface Output Queue, no LFI


LFI Illustration Test Setup

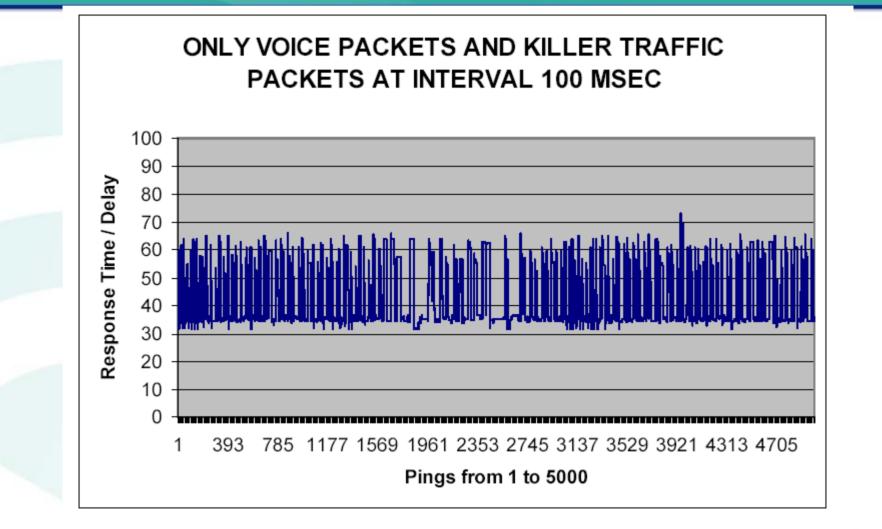
- LFI Illustration can be done by two ICMP ping streams on Linux Machines
- 1500 Byte ping Stream denoting high byte killer traffic
- 40 Byte ping stream denoting voice traffic
- Both are put in separate queues with 40 bytes given higher priority
- A constant 5000 ping sequence were run & it response was noted with the injection of 1500 byte ping stream simultaneously
- The response of 40 byte ping streams simulates how the voice traffic will behave



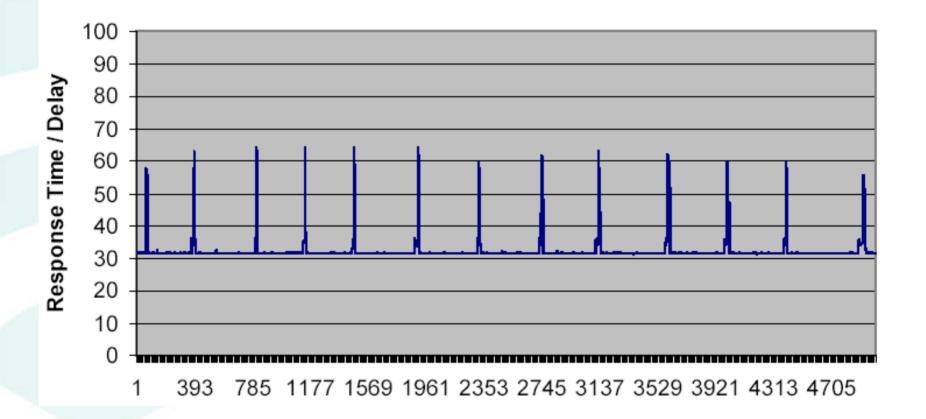
Observation (No QoS – No LFI – Killer traffic at 1 sec)



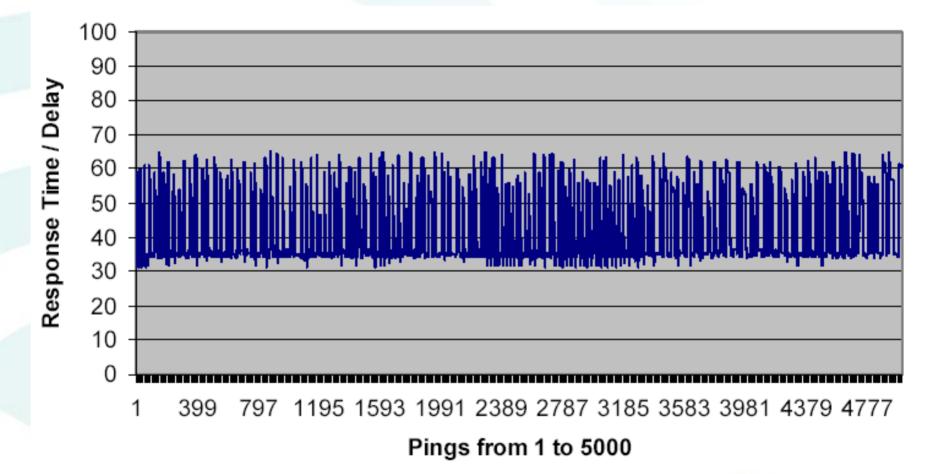
Observation (No QoS – No LFI – Killer traffic at 0.1 sec I.e 100ms)



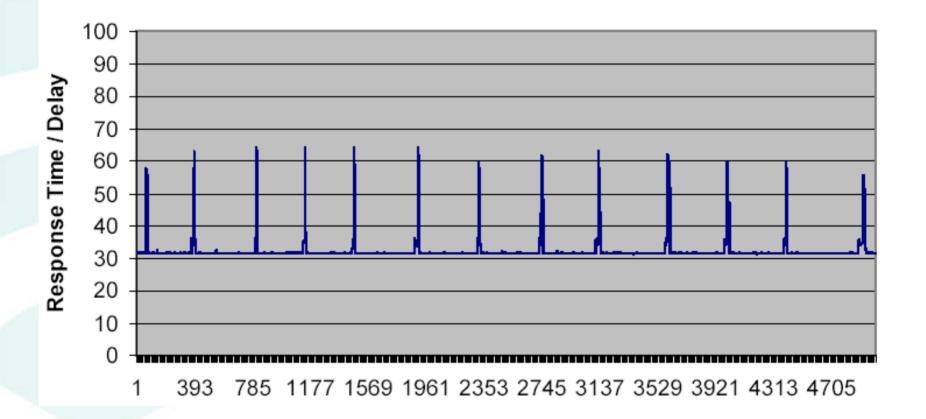
Observation (QoS – No LFI – Killer traffic at 1 sec)



Observation (QoS – No LFI – Killer traffic at 0.1 sec)

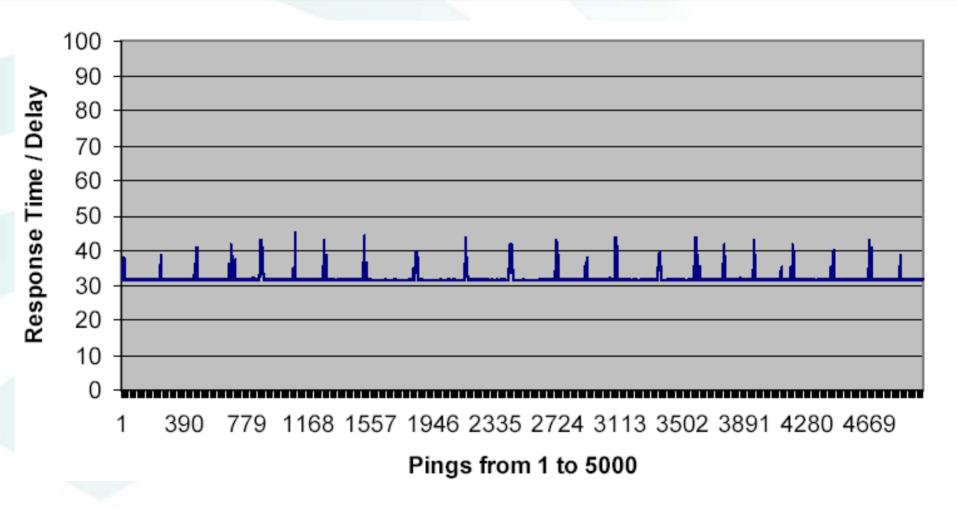


Observation (QoS – LFI of 10ms – Killer traffic at 1 sec)



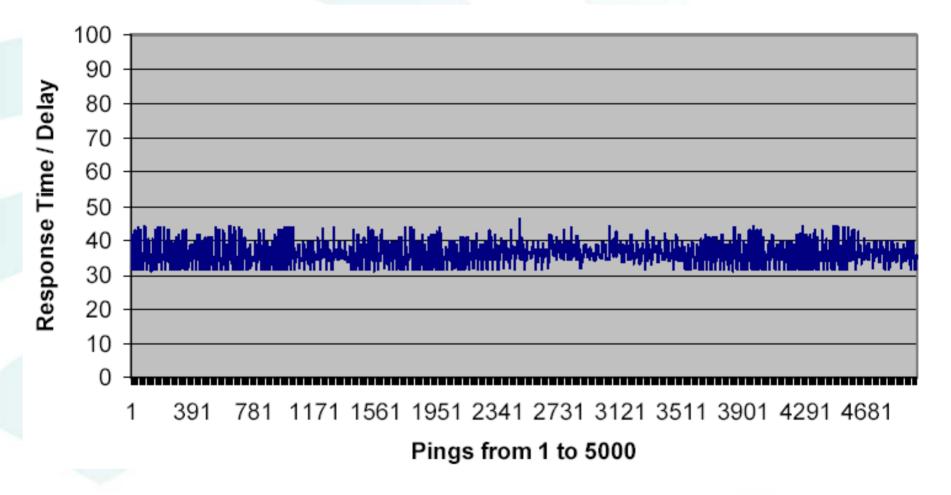
Observation (QoS – LFI of 10ms – Killer traffic at 0.1 sec)

Observation (QoS – LFI of 10ms – Killer traffic at 1 sec)

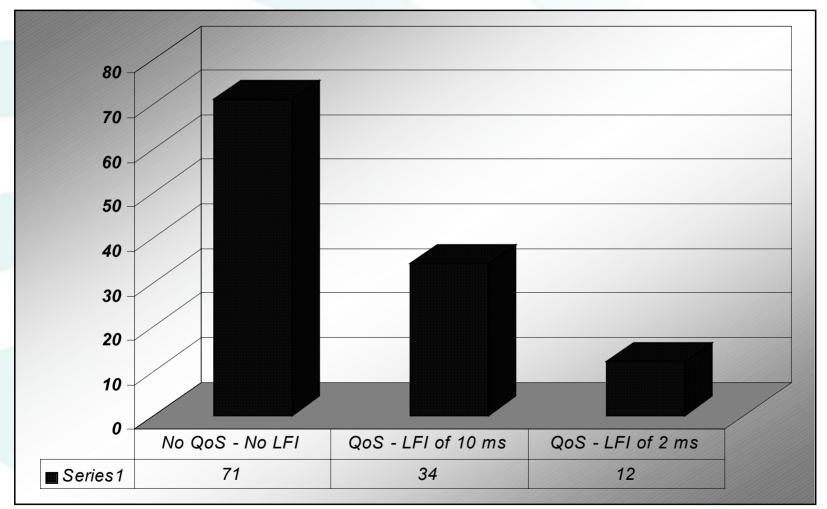


What is Difference Between 10 ms LFI & 2 Ms LFI

	will happen	Fragmentation will happen after how many bytes		
Bandwidth (Kbps)	LFI (10ms)	LFI (2ms)		
400	500	100		
800	1000	200		
1500	1875	375		
2000	2500	500		



Observation (QoS – LFI of 2 ms – Killer traffic at 1 sec)



Observation (QoS – LFI of 2ms – Killer traffic at 0.1 sec)

LFI Test results (summary)

Summary of RTP stream behaviour

- With cRTP the bandwidth can be reduced
- With LFI the voice performance can be guaranteed in the Data + voice mix scenario
- LFI should be used if the bandwidth on the link is low
- Off course enabling cRTP & LFI feature will means additional workload for the network devices
- So careful understanding & Engineering is must

Implementation Strategies

- Fully Understand the end requirements / expectations from the user
- List down the applications expected to run across the network & their performance expectations
- Based on the above inputs device strategies to
 - Classify the packets
 - Mark them accordingly
 - Apply policies depending on the user requirements
- Test all the traffic profile
- Based on the test results fine tune the configurations to move towards the final customer expectations

Conclusions

- On Low bandwidth & High Delay satellite links
 - QoS is very important on account of the characteristics like high delay
 - Understanding of the traffic profile is very important
 - Based on the traffic profile QoS strategies need to be finalized to meet the customer experience
 - Keeping in mind the Engineering & commercial considerations

References ...

- QoS Presentation
 - Jeff Doyle Juniper Networks
- IP Telephony & QoS Guide
 - Wendell Odom / M J Cavanaugh Cisco Press
 - Cisco Website
- Spoofing
 - Sunil Janardhanan Hughes

