EFFICIENT RESOURCE BROKER ARCHITECTURE TO PROVIDE GUARANTEED QoS

By E. Praveen Kumar, CEG, Anna University, Chennai, India.

ABSTRACT

- Rapid growth of Multimedia applications over Internet.
- Diverse traffic characteristics
 - ➢ Real-Time,
 - Iarge size,
 - ➢ high BW,
 - ➢ fault tolerant,
 - \succ sensitive to jitter.
- Inefficient best-effort services by IP.
- Providing QoS over IP is challenging issue.
 Proposed solution:
- Resource Broker (RB) to provide QoS.
- > Applicability of RB for IoD and VoD.

CONTENTS

> Introduction

- Efficient Resource Broker System
- Implementation and Results
- Conclusions and Future work
- References

INTRODUCTION

INTRODUCTION

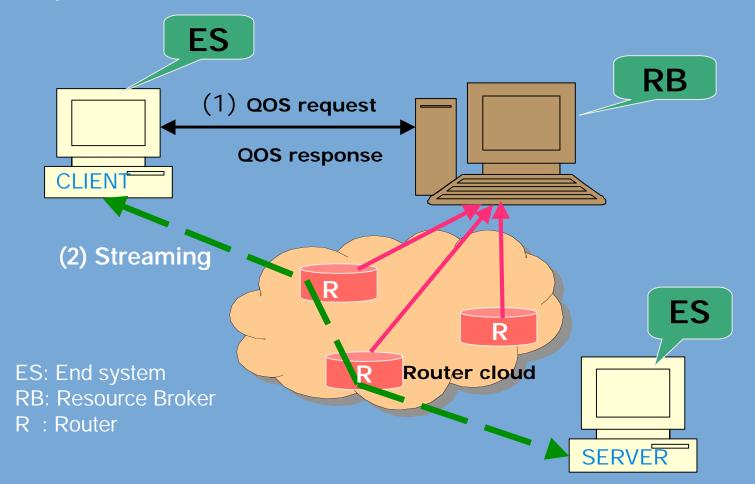
- Multimedia an important service offered over Internet.
- High demand for <u>streaming applications such as VoD</u>, VoIP,VC.
 - Simultaneous receiving and playing of media (audio, video).
- QoS in terms of Bandwidth and jitter is metric for network support.
 Relevant Work

IETF proposed QoS mechanisms

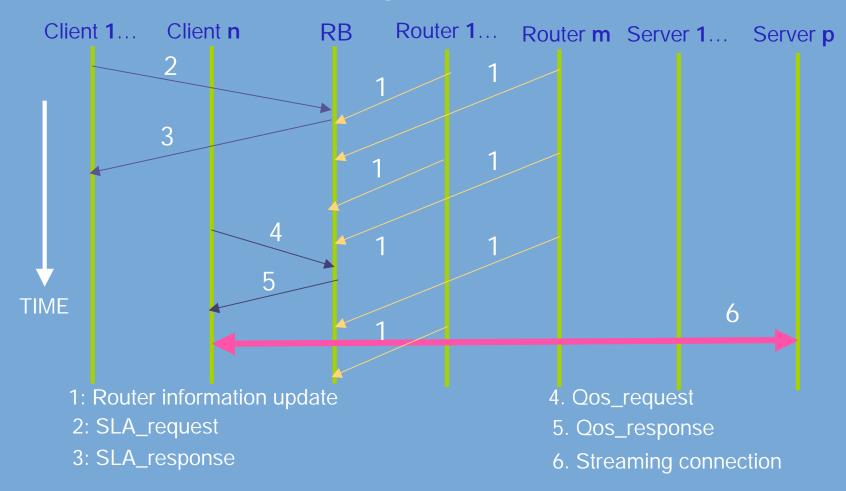
- 1. Integrated services (IntServ)
 - IntServ provides <u>end to end</u> QoS.
 - Uses <u>RSVP</u> protocol for resource reservation
 - Routers should maintain per- flow information
 - <u>Scalability</u> of flows is major disadvantage.
 - Out-of –band signaling mechanism, bandwidth overhead

INTRODUCTION

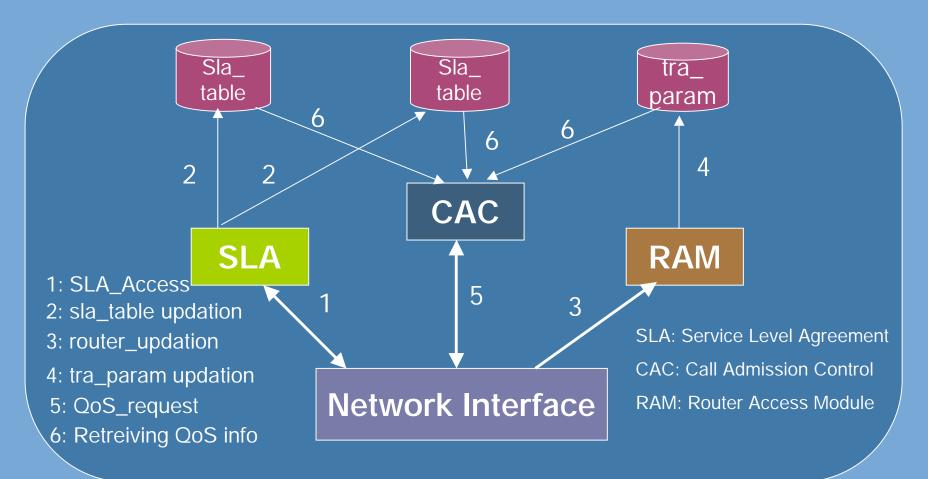
2. Differentiated Services (DiffServ)


- Classifies traffic in to different classes
- <u>Scalable</u> approach
- No need to maintain flow information.
- Does not guarantee the QoS.
- <u>In-band</u> signaling mechanism.
- Policy Based Management (PBM)
- Active Networking (AN)

Objectives of ERB


- 1. Client transparent QoS services.
- 2. Guaranteed QoS by resource allocation.
- 3. **Compatible** with existing network technologies.
- 4. Scalable and easy to access.

EFFICIENT RESOURCE BROKER (ERB) SYSTEM


Experimental Environment

Event sequence diagram

Resource Broker Architecture

MODULE DESCRIPTION

1. Service Level Agreement (SLA) module

SLA_access modes:

Request	Parameters in this message	RB action
ADD_SLA	Sid, abr, delay, jitter, loss, did	Added to SLA_table
UPDATE_SLA	Sid, abr, delay, jitter, loss, did	Updated in SLA_table
REMOVE_SLA	Sid,did	Removed in SLA_table
VIEW_SLA	Sid,did	RB Replies with abr, Delay, jitter, loss

2. Call Admission Control (CAC) module

- Receives QoS requests from clients
- Decision taken about new call admission
 - Bandwidth available in network should be more compared to BW present in SLA table and Delay, jitter, loss present in in SLA table should more than tra-param table
- Response Accept/ Reject sends to client

QOS REQUEST/RESPONSE PARAMETRIC TABLE

Request	Parameters	Response
QOS_REQ	Sid,did	ACCEPT OR REJECT

3. Router Access Module (RAM)

Routers send their information periodically.
 RAM Updates the traffic_ parameter table
 Router information Updating parametric table:

Request	Parameters	RB action	
Rout_updt	Rid, BW, delay, jitter, loss	Traffic_param table is updated	

IMPLEMENTATION AND RESULTS

IMPLEMENTATION

END SYSTEM :

Graphical interface - java swing

ERB SYSTEM:

ERB implementation: JAVA

Graphical interface - java swing

ROUTER NODES:

simulated using JMF

COMMUNICATION:

TCP/IP sockets: client-RB and router-RB

RTP (JMF) : client-media server.

APPLICATIONS: IOD and VOD

TEST SET

ERB system : 1

Media servers : 2

Client systems : 3

Routers : 3

 Client requests the RB for Access to SLA module Eg. Registration – uses ADD_SLA mode
 At the Client: Before Request

擒 CLIENT INTERFACE TO RESOURC	EBROKER			- 🗆 🗵
SERVICE LEVEL AGREEMENT (SLA) ACCES	S QUALITY OF SERVI	CE CONNECTION VIDEO C	ONNECTION	
SELECT SLA ACCESS MODE: -	SELECT APPLICATION	DETAILS		
ADD-SLA	VOD 🔻	SLA-ID :	192.168.1.72	
ADD-SLA		ABR(Kbps) :	4000 💌	
		DELAY(sec) :	2	
		JITTER(msec) :	20 💌	
		LOSS(%) :	1	
FROM RESOURCEBROKER		DEST-ID :	192.168.1.24 💌	
WAITING			SUBMIT	

After processing REGISTRATION request

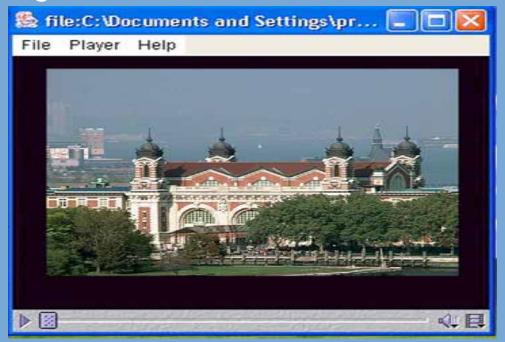
GUI At the RB : After receiving Add_SLA request GUI At the Client: After receiving response

É RESOURCE BROKER INTERFACE	LIX SCHENT INTERFACE TO RESOURCEBROKER	
AT RESOURCE BROKER DETAILS waiting SLA-ID : 192.168.1.72 connection accepted ABR : 4000 ADDED TO SLA_TABLE DELAY : 2 FROM CLIENT JITTER : 20	Image: Client Interface to Resourcebroker Service Level Agreement (SLA) ACCESS QUALITY OF SERvice CONNECTION VOD VIDEO CONNECTION ADD-SLA VOD VOD EAR(Kbps) UTTER(msec) 20 UTTER(msec) 20 USSS(%) 1	
ACCESS-MODE ADD-SLA LOSS : 1 DEST-ID : 192.168.1.24	FROM RESOURCEBROKER ADDED TO SLA_TABLE sia_id: 192.168.1.72 with: 192.168.1.24	

2. Streaming QoS request

- OoS request to RB for Media streaming .
- Request to media server for data .

Eg. CONNECTION ACCEPTED


GUI At Client side

	ERFACE TO RESOURCEBI			<u> </u>	RESOURCE
SERVICE LEVEL /	AGREEMENT (SLA) ACCESS	QUALITY OF SERVICE (CONNECTION VIDEO CONNECTION		RESOURCE
					TAT R
-QoS	S REQUEST		QoS RESPONSE		unait
					wait
EN	ITER THE SERVER ADDRESS:		FROM RESOURCEBROKER:		con
	TER THE SERVER ADDRESS.		THOM RESOURCEDITORER.		Res
	192.168.1.24	T	ACCEPTED		
	1132.100.1.24		ACCEPTED		FROM
	1				riton
	SUBMIT				
					ACC
					QOS

GUI At RB side

AT RESOURCEBROKER waiting connection accepted Res:ACCEPTED sent to client FROM CLIENT	DETAILS SLA-ID : 192.168.1.72 ABR : 4000 DELAY : 2 JITTER : 20 LOSS : 1
QOS-REQ	DEST-ID : 192.168.1.24

Client receiving streamed video from server

Results

- > All modules are tested for various test cases.
- > Dynamic admission control performed to achieve QoS.

Conclusions and Future work

Conclusions and Future work

Conclusions

- ERB system is designed to provide QoS .
- ERB guarantees QoS by
 - Resource allocation
 - > Dynamic admission control
 - Resource monitoring
- > Applicability of ERB is tested in LAN for IoD and VoD applications.
- > New connections **does not disturb** existing connections.

Future work

- Advance reservation of network resources.
- > Extending ERB to live multimedia such as Video conferencing.
- > Network monitoring after application deployment.
- > Inter RB communication across networks.

REFERENCES

- 1. S. Black, et. al., "An Architecture for Differentiated Services," IETF RFC 2475, 1998.
- A. L. Lage, J. S. B. Martins, J. Oliveira, W. Cunha, "A Quality of Service Framework for Tele-Medicine Applications", IEEE, Proceedings of the Web Media & LA-Web 2004 Joint Conference 10th Brazilian Symposium on Multimedia and the Web 2nd Latin American Web Congress, pp18-20, August/2004.
- 3. Dongwook Lee, Dong-Hoon Yi, Kim, Kyungae Yun, JongWon Kim, Sangkil Jung, and Okhwan Byeon, "*Implementation of on-demand QoS allocation system over IP for multimedia applications*," Proceedings of SPIE Vol. 5242 Internet Multimedia Management Systems, pp 237-245, 2003.
- 4. B. Teitelbaum, S. Hares, L. Dunn, R. Neilson, V. Narayan, and F. Reichmeyer, "*Internet2 QBone: building a testbed for differentiated services*," IEEE Network, Volume, 13 Issue 5,pp 8-16, Sep/Oct 1999.
- 5. I. Khalil and T. Braun, "*Implementation of a bandwidth broker for dynamic end-to-end resource reservation in outsourced virtual private networks*," in Proc. LCN'02, pp 511-519, 2000

THANK YOU