

Network Infrastructure Security in Cellular Data Networks: An Initial Investigation

Kavita Barapatre, Nirlesh Koshta, Vishal Sharma

IIT Bombay, Mumbai, India and Fabio Ricciato

Forschungszentrum Telekommunikation Wien (FTW), Vienna, Austria

© Copyright 2005-06 All Rights Reserved

- Motivation why worry about *infrastructure security*?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed
- Tools for investigating network security

- Motivation why worry about *infrastructure security*?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed
- Tools for investigating network security

Why Infrastructure Security?

Network Security

Information Security

- Keeping user's info. protected
- Subject of cryptography
- Not subject of this talk

Infrastructure Security

- Sustaining ability of network elements to provide connectivity between communicating entities

- Subject of this talk

Cellular GSM/CDMA networks moving to an IP core ...

- Network increasingly open
- Control/data segregation inherently less stringent
- Increased threats! ... Exposure to wireline-like security risks

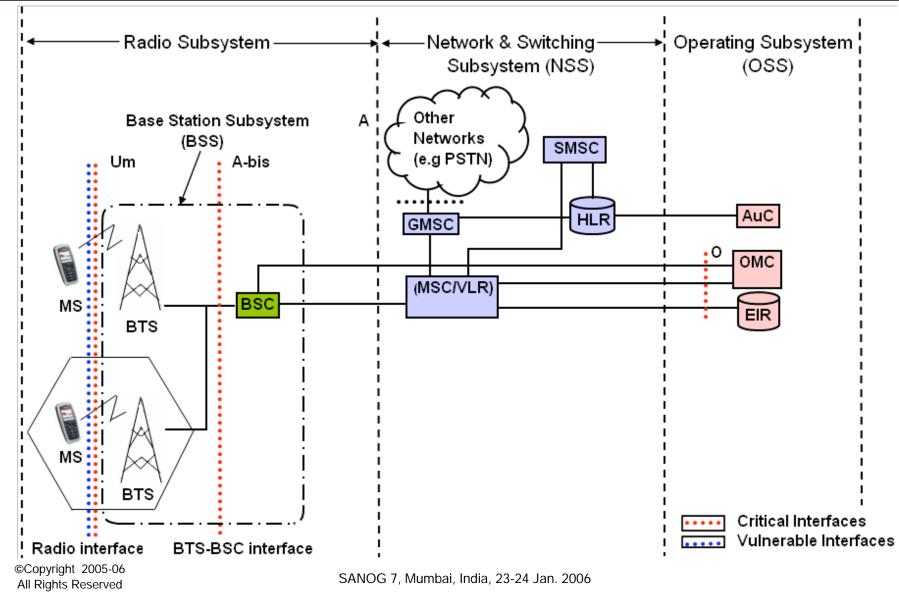
©Copyright 2005-06 All Rights Reserved

Motivation (contd)

- Interplay of IP and complex structure of cellular networks
 - ⇒ Gives rise to subtle phenomena ...

... that may not be easily conceived

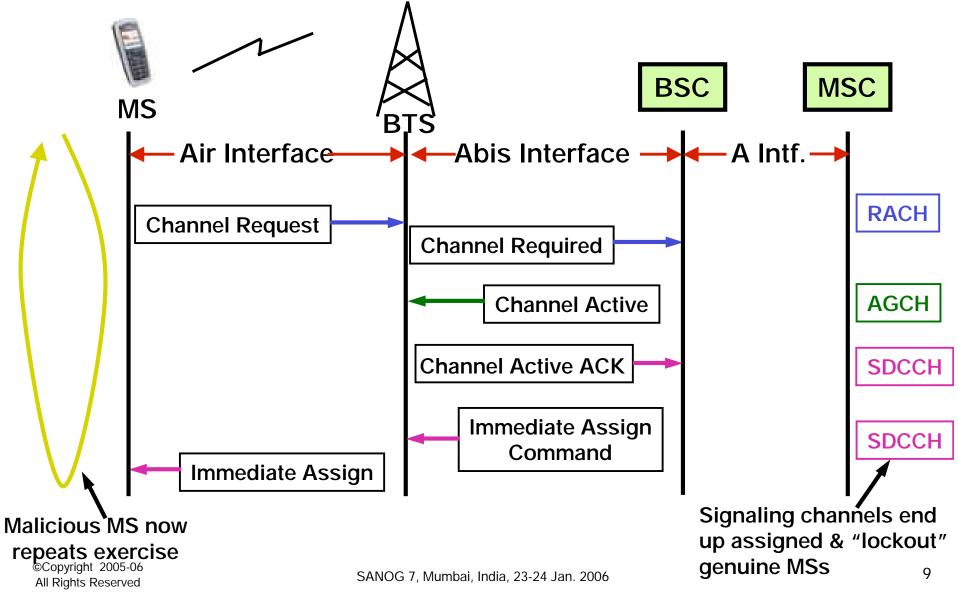
⇒ Need to be found empirically via intelligent experimentation


- Provider infrastructure security becomes key, imperative to …
 - Investigate susceptibilities and risks
 - Evaluate options, fixes, and solutions
 - Propose techniques and tools for proactive/reactive action

- Motivation why worry about infrastructure security?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed
- Tools for investigating network security

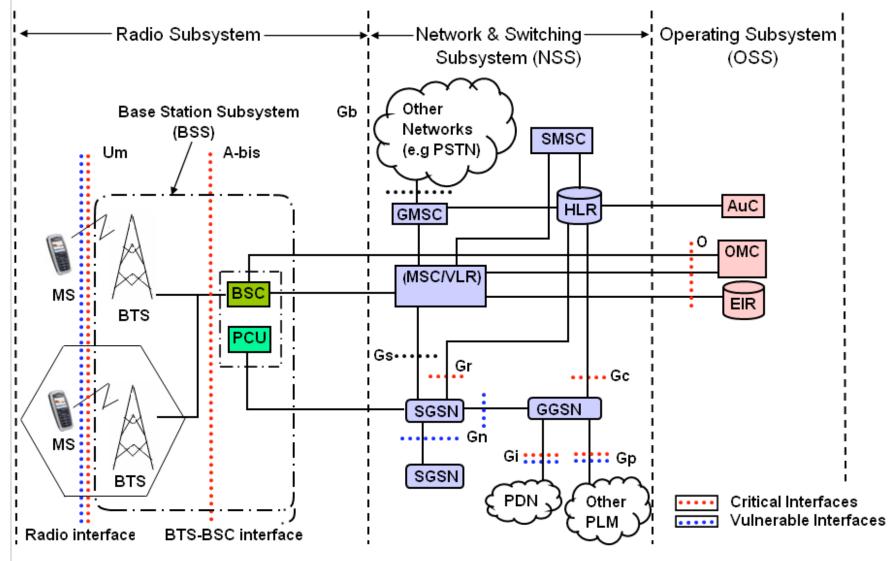
GSM Network Architecture

Vulnerabilities in GSM



Flaws in authentication and encryption

- No subscriber auth. in initial part of mobile originated call
- Radio interface well protected, fixed infrastructure vulnerable
- Access to AuC allows attacker to obtain auth. key
 - Encrypted MS ↔ BS traffic can be captured & deciphered
- GSM encryption has been broken!
 - Large scale attacks can be launched with relatively small traffic vols.


A Signaling Channel DoS Attack in GSM

GPRS Network Architecture

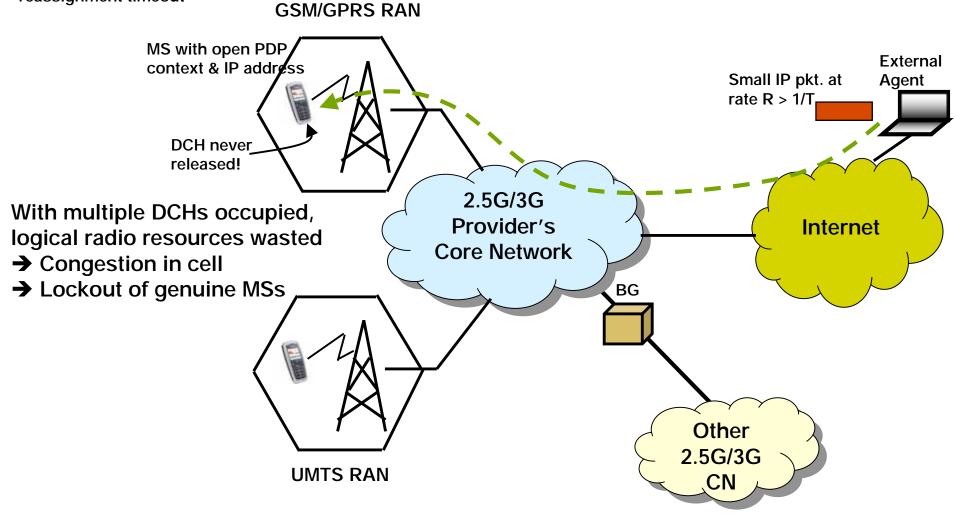
Copyrigni 2005-06 All Rights Reserved

SANOG 7, Mumbai, India, 23-24 Jan. 2006

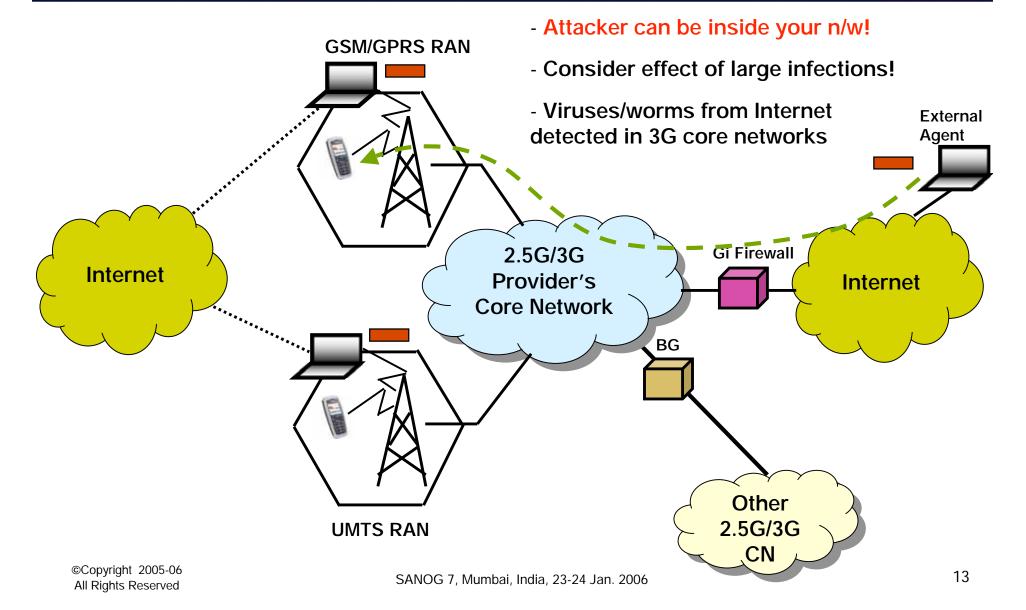
Vulnerabilities and Criticalities in GPRS

Critical Interfaces

- Gi: Exposed to Internet and corporate networks
- Gp: Primary interconnection pt. between operator's n/w and untrusted external n/ws
- Gc: Allows access (via HLR) to key user info. from remote network during roaming

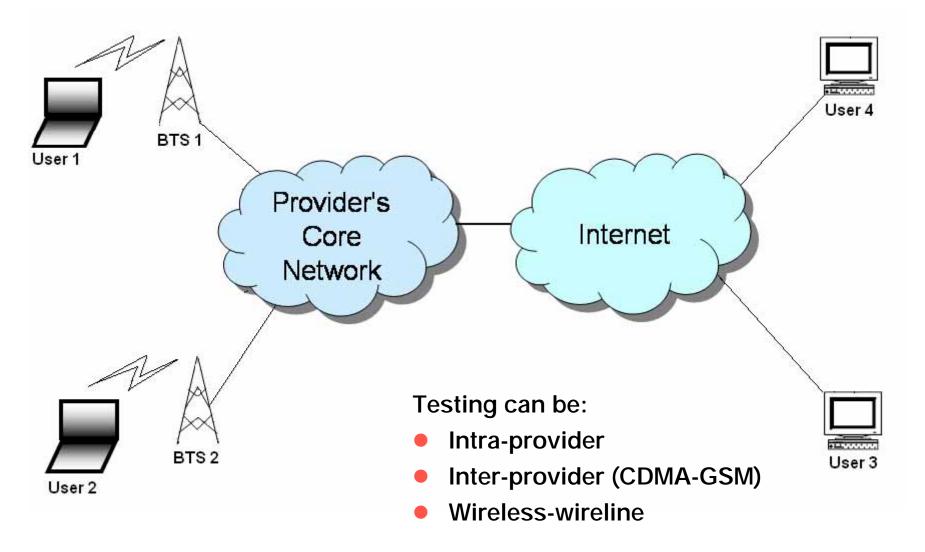

Vulnerable Interfaces

- Gi: Exposed to all threats from Internet: viruses, DoS, and malicious network traffic
- Gp: Connection hijacking, overbilling from a roaming network during handover
- Gn: Not encrypted by default


A DCH "Lockout" Attack in GPRS

T = DCH release/dynamic reassignment timeout

Impact of Unwanted Traffic: Viruses, worms, trojans, ...



- Motivation why worry about infrastructure security?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed
- Tools for investigating network security

Experimental Test-bed Setup & Testing Scenarios

- Motivation why worry about infrastructure security?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed
- Tools for investigating network security

Testing Methodology

Taxonomy of Tests

Active Probing

Direct malicious generated traffic to SP's network or to a remote m/c on network. E.g.

- > SYN attack
- Tear-drop attack
- Smurf attack

Exploit various types of commun.

Port-to-port

IP address spoofing

Infer network parameters: RTT, buffers

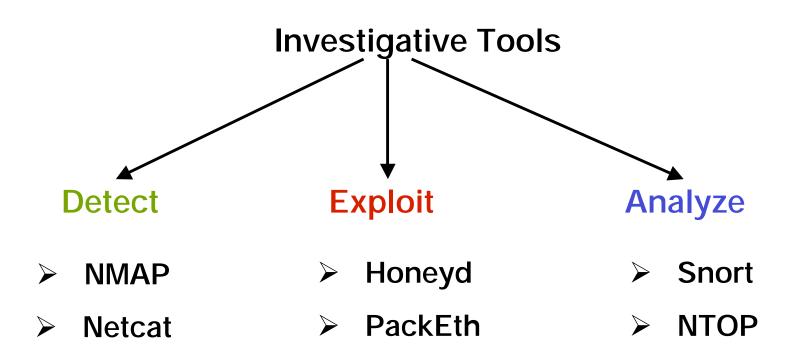
Passive Listening

Provoke remote attacker(s) to attack m/c under observation

>Invoke attacks, HoneyD as "bait"

Run intrusion detection systems on attacked m/c

Apply intelligent algorithms for proactive threat inference



- Motivation why worry about infrastructure security?
- GSM /GPRS network architecture & critical interfaces
- Attacks exploiting security loopholes in GSM/GPRS
- Impact of unwanted traffic: viruses, worms, trojans, ...
- Testbed setup and testing scenarios
- Methodology: nature of tests possible, what else is needed

Tools for investigating network security

Network Security Investigation

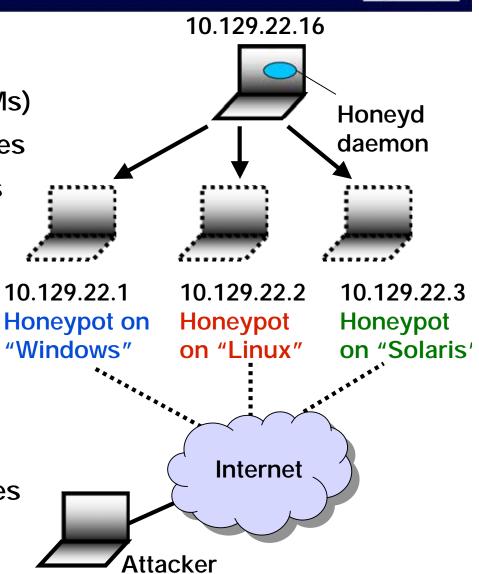
Tools for Detecting Vulnerabilities

Network MAPper (NMAP)

- Determines running apps. on target m/c
- Identifies open ports, OS, firewalls used by remote host(s)

Netcat

- Utility used to read/write across network connections using TCP/UDP protocol(s)
- Feature-rich, network debugging and exploration tool


Tools for Exploiting Vulnerabilities

• HoneyD:

- Creates virtual machines (VMs)
- VMs have unique IP addresses
- Lure attackers to themselves
- Can be Windows or Linux

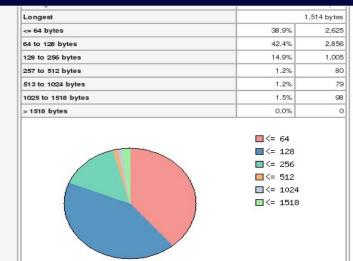
PackETH

- Packet generator
- Generates packets of any protocol - ARP, TCP, UDP, ...
- User configurable pkt. profiles

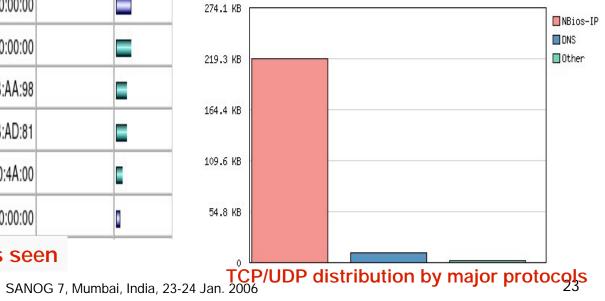
Tools for Analyzing Vulnerabilities

Snort

- Real-time traffic analysis & packet logging
- Usable in multiple modes:
 - Packet sniffer
 - Data logger
 - Intrusion detection
- Generates variety of alerts usable for proactive detection


• NTOP

- Traffic usage monitor & packet analyzer
- Supports mgt. activities: planning, opt., detection
- Tracks ongoing attacks, generates alarms



NTOP at Work

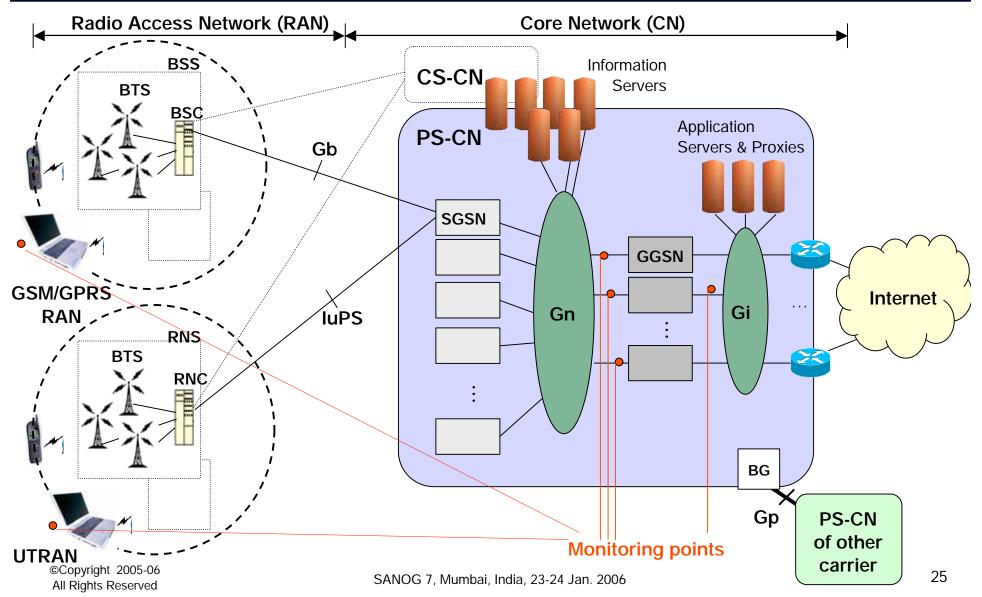
Host	Domain	IP Address	MAC Address	Other Name(s)	Bandwidth
dnscache.iitb.ac.in 🕚	Ŷ	10.200.1.11			
10.11.1.99		10.11.1.99	00:03:0D:32:1B:85		
10.11.201.89		10.11.201.89	00:13:20:2A:25:85		
10.11.100.70		10.11.100.70	00:11:11:8C:3E:CA		_
10.11.201.54		10.11.201.54	00:50:BF:62:F9:7B		
bridge sp. tree/osi route:00:00:00			01:80:C2:00:00:00		
d-link systems, inc.:00:00:00 +4++			00:80:C8:00:00:00		
10.11.11.16		10.11.11.16	00:03:47:6B:AA:98		
10.11.200.65		10.11.200.65	00:08:A1:7B:AD:81		
router.hostel11.iitb.ac.in 🚸	1	10.11.250.1	00:04:96:10:4A:00		
extreme networks:00:00:00			00:E0:2B:00:00:00		0

Packet size distribution

Traffic breakdown by hosts seen

©Copyright 2005-06 All Rights Reserved

Packets


NMAP and Snort Working in Conjunction

✓ root@localhost:~	×	root	@kavita: /home/kavitha	= = ×
<u>File E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp	<u>File E</u> dit <u>V</u> iew <u>T</u> erm	iinal Ta <u>b</u> s	<u>H</u> elp	
<pre>[root@localhost ~]# nmap 10.129.33.19 Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2006-01-07 Interesting ports on bluechip.it.iitb.ac.in (10.129.33.19): (The 1648 ports scanned but not shown below are in state: closed) PORT STATE SERVICE 22/tcp open ssh 25/tcp filtered smtp 53/tcp open domain 111/tcp open rpcbind 135/tcp filtered msrpc 136/tcp filtered netbios-ns 138/tcp filtered netbios-ssn 138/tcp filtered netbios-ssn 445/tcp filtered microsoft-ds 631/tcp open ipp 3000/tcp open ppp</pre>	<pre>[1/09-17:40:25.16589 [Classification: Mi 0.129.33.19:0 01/09-17:40:25.16591 [Classification: Mi .11.1.99:3815 01/09-17:42:07.26735 10.11.1.99: 2 connec 01/09-17:40:32.37555 255} 10.11.1.99 -> 1 01/09-17:40:32.45729 ssification: Attempt 3984 -> 10.129.33.19 01/09-17:40:33.57199 n: Attempted Informa .129.33.19:162 01/09-17:40:33.78657 02553 10.11 1 99 -></pre>	2 [**] [isc activi 53 [**] [isc activi 53 [**] [ctions acr 53 [**] [10.129.33. 05 [**] [ced Inform 0:705 04 [**] [ation Leak 74 [**] [<pre>[1:524:8] BAD-TRAFFIC tcp port 0 traffi ity] [Priority: 3] {TCP} 10.11.1.99:381 [1:524:8] BAD-TRAFFIC tcp port 0 traffi ity] [Priority: 3] {TCP} 10.129.33.19:0 [100:2:1] spp_portscan: portscan status coss 1 hosts: TCP(2), UDP(0) STEALTH [* [122:1:0] (portscan) TCP Portscan [**] .19 [1:1421:11] SNMP AgentX/tcp request [** mation Leak] [Priority: 2] {TCP} 10.11. [1:1420:11] SNMP trap tcp [**] [Classif c] [Priority: 2] {TCP} 10.11.1.99:33984 [122:17:0] (portscan) UDP Portscan [**]</pre>	5 -> 1 c [**]) -> 10 from *] {PROTO] [Cla 1.99:3 ficatio a -> 10
Nmap run completed 1 IP address (1 host up) scanned in 1.553 sec Attacking m/c: scans using NMAP	e.	m/c: p	erforms analysis via Sn	ort 🔻

What More is Needed

Summary

- Cellular infrastructure security ... critically important in future
- Analyzed GSM /GPRS from a vulnerability standpoint
- Highlighted key aspects, such as
 - Critical interfaces
 - Sample attacks
 - Effects of unwanted traffic!
- Presented our testbed setup and testing scenarios
- Focused on nature and types of test portfolio
- Reviewed tools and techniques to assess security

©Copyright 2005-06 All Rights Reserved

References and Glossary

